首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Despite the general availability in the past two decades of the spectrum analyzer and prominent pedagogical theories concerning the conscious tuning of vowel formants to enhance the singing voice, there has been little reported use of spectrum analysis to track formant frequencies in singing. An important exception is Sundberg's work (1) on the soprano voice. The reasons for this neglect are considered: in the singing range where information on formant tuning would be most helpful, the wide spacing of the harmonics renders the formants difficult to locate by spectrum analysis. Methods are described for obtaining continuous spectrograms with the vocal tract in the varied articulations of singing by using sweep tones and nonharmonic voice sources, and thus locating quickly and accurately the frequencies of the first five formants.  相似文献   

2.
Register transitions are divided into two classes, periodicity transitions and timbre transitions. Periodicity transitions refer to changes in vocal quality that occur whenever glottal pulses are perceived as individual events rather than as a continuous auditory stimulus. Timbre transitions refer to changes in vocal quality associated with changes in spectral balance. Physiologically, these can be quantified with an abduction quotient. The singing registers appear to be based on timbre transitions resulting from subglottal resonances that interfere with the vocal fold driving pressure. Four of the major singing register shifts are predicted (in frequency and relative importance) on the basis of the first subglottal formant. Strategies for register equalization are proposed on the basis of supraglottal formant tuning (vowel modification) and adjustments in glottal adduction.  相似文献   

3.
Several experiments have found that changing the intrinsic f0 of a vowel can have an effect on perceived vowel quality. It has been suggested that these shifts may occur because f0 is involved in the specification of vowel quality in the same way as the formant frequencies. Another possibility is that f0 affects vowel quality indirectly, by changing a listener's assumptions about characteristics of a speaker who is likely to have uttered the vowel. In the experiment outlined here, participants were asked to listen to vowels differing in terms of f0 and their formant frequencies and report vowel quality and the apparent speaker's gender and size on a trial-by-trial basis. The results presented here suggest that f0 affects vowel quality mainly indirectly via its effects on the apparent-speaker characteristics; however, f0 may also have some residual direct effects on vowel quality. Furthermore, the formant frequencies were also found to have significant indirect effects on vowel quality by way of their strong influence on the apparent speaker.  相似文献   

4.
5.
That singers under certain circumstances adjust the articulation of the vocal tract (formant tuning) to enhance acoustic output is both apparent from measurements and understood in theory. The precise effect of a formant on an approaching (retreating) harmonic as the latter varies in frequency during actual singing, however, is difficult to isolate. In this study variations in amplitude of radiated sound components as well as supraglottal and subglottal (esophageal) pressures accompanying the vibrato-related sweep of voice harmonics were used as a basis for estimating the effective center frequencies and bandwidths of the first and second formants.  相似文献   

6.
Operatic sopranos need to be audible over an orchestra yet they are not considered to possess a singer's formant. As in other voice types, some singers are more successful than others at being heard and so this work investigated the frequency range of the singer's formant between 2000 and 4000 Hz to consider the question of extra energy in this range. Such energy would give an advantage over an orchestra, so the aims were to ascertain what levels of excess energy there might be and look at any relationship between extra energy levels and performance level. The voices of six operatic sopranos (national and international standard) were recorded performing vowel and song tasks and subsequently analyzed acoustically. Measures taken from vowel data were compared with song task data to assess the consistency of the approaches. Comparisons were also made with regard to two conditions of intended projection (maximal and comfortable), two song tasks (anthem and aria), two recording environments (studio and anechoic room), and between subjects. Ranking the singers from highest energy result to lowest showed the consistency of the results from both vowel and song methods and correlated reasonably well with the performance level of the subjects. The use of formant tuning is considered and examined.  相似文献   

7.
The formant hypothesis of vowel perception, where the lowest two or three formant frequencies are essential cues for vowel quality perception, is widely accepted. There has, however, been some controversy suggesting that formant frequencies are not sufficient and that the whole spectral shape is necessary for perception. Three psychophysical experiments were performed to study this question. In the first experiment, the first or second formant peak of stimuli was suppressed as much as possible while still maintaining the original spectral shape. The responses to these stimuli were not radically different from the ones for the unsuppressed control. In the second experiment, F2-suppressed stimuli, whose amplitude ratios of high- to low-frequency components were systemically changed, were used. The results indicate that the ratio changes can affect perceived vowel quality, especially its place of articulation. In the third experiment, the full-formant stimuli, whose amplitude ratios were changed from the original and whose F2's were kept constant, were used. The results suggest that the amplitude ratio is equal to or more effective than F2 as a cue for place of articulation. We conclude that formant frequencies are not exclusive cues and that the whole spectral shape can be crucial for vowel perception.  相似文献   

8.
Acoustic comparison of voice use in solo and choir singing   总被引:3,自引:0,他引:3  
An experiment was carried out in which eight bass/baritone singers were recorded while singing in both choral and solo modes. Together with their own voice, they heard the sound of the rest of the choir and a piano accompaniment, respectively. The recordings were analyzed in several ways, including computation of long-time-average spectra for each passage, analysis of the sound levels in the frequency ranges corresponding to the fundamental and the "singer's formant," and a comparison of the sung levels with the levels heard by the singers. Matching pairs of vowels in the two modes were inverse filtered to determine the voice source spectra and formant frequencies for comparison. Differences in both phonation and articulation between the two modes were observed. Subjects generally sang with more power in the singer's formant region in the solo mode and with more power in the fundamental region in the choral mode. Most singers used a reduced frequency distance between the third and fifth formants for increasing the power in the singer's formant range, while the difference in the fundamental was mostly a voice source effect. In a choral singing mode, subjects usually adjusted their voice levels to the levels they heard from the other singers, whereas in a solo singing mode the level sung depended much less on the level of an accompaniment.  相似文献   

9.
Vowel matching and identification experiments were carried out to investigate the perceptual contribution of harmonics in the first formant region of synthetic front vowels. In the first experiment, listeners selected the best phonetic match from an F1 continuum, for reference stimuli in which a band of two to five adjacent harmonics of equal intensity replaced the F1 peak; F1 values of best matches were near the frequency of the highest frequency harmonic in the band. Attenuation of the highest harmonic in the band resulted in lower F1 matches. Attenuation of the lowest harmonic had no significant effects, except in the case of a 2-harmonic band, where higher F1 matches were selected. A second experiment investigated the shifts in matched F1 resulting from an intensity increment to either one of a pair of harmonics in the F1 region. These shifts were relatively invariant over different harmonic frequencies and proportional to the fundamental frequency. A third experiment used a vowel identification task to determine phoneme boundaries on an F1 continuum. These boundaries were not substantially altered when the stimuli comprised only the two most prominent harmonics in the F1 region, or these plus either the higher or lower frequency subset of the remaining F1 harmonics. The results are consistent with an estimation procedure for the F1 peak which assigns greatest weight to the two most prominent harmonics in the first formant region.  相似文献   

10.
Level and Center Frequency of the Singer's Formant   总被引:2,自引:0,他引:2  
Johan Sundberg   《Journal of voice》2001,15(2):176-186
The "singer's formant" is a prominent spectrum envelope peak near 3 kHz, typically found in voiced sounds produced by classical operatic singers. According to previous research, it is mainly a resonatory phenomenon produced by a clustering of formants 3, 4, and 5. Its level relative to the first formant peak varies depending on vowel, vocal loudness, and other factors. Its dependence on vowel formant frequencies is examined. Applying the acoustic theory of voice production, the level difference between the first and third formant is calulated for some standard vowels. The difference between observed and calculated levels is determined for various voices. It is found to vary considerably more between vowels sung by professional singers than by untrained voices. The center frequency of the singer's formant as determined from long-term spectrum analysis of commercial recordings is found to increase slightly with the pitch range of the voice classification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号