首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 616 毫秒
1.
Periodic, self-consistent DFT-GGA(PW91) calculations are used to study the interaction of hydrogen with different facets of seventeen transition metals—the (100) and (111) facets of face-centered cubic (fcc) metals, the (0001) facet of hexagonal-close packed (hcp) metals, and the (100) and (110) facets of body-centered cubic (bcc) metals. Calculated geometries and binding energies for surface and subsurface hydrogen are reported and are, in general, in good agreement with both previous modeling studies and experimental data. There are significant differences between the binding on the close-packed and more open (100) facets of the same metal. Geometries of subsurface hydrogen on different facets of the same metal are generally similar; however, binding energies of hydrogen in the subsurface of the different facets studied showed significant variation. Formation of surface hydrogen is exothermic with respect to gas-phase H2 on all metals studied with the exception of Ag and Au. For each metal studied, hydrogen in its preferred subsurface state is always less stable than its preferred surface state. The magnitude of the activation energy for hydrogen diffusion from the surface layer into the first subsurface layer is dominated by the difference in the thermodynamic stability of these two states. Diffusion from the first subsurface layer to one layer further into the bulk does not generally have a large thermodynamic barrier but still has a moderate kinetic barrier. Despite the proximity to the metal surface, the activation energy for hydrogen diffusion from the first to the second subsurface layer is generally similar to experimentally-determined activation energies for bulk diffusion found in the literature. There are also some significant differences in the activation energy for hydrogen diffusion into the bulk through different facets of the same metal.  相似文献   

2.
Surface photovoltage spectroscopy, Auger electron spectroscopy, LEED, X-ray and ultraviolet photoemission measurements are reported for (112̄0) CdSe under a variety of ultrahigh vacuum conditions. As with CdS, all surface electronic features can be related to chemical contamination, Ar+ bombardment-induced lattice defects, or bulk trap states. Oxygen adsorption on CdSe and CdS produce qualitatively different electronic features which are attributed to different bonding at surface vacancy sites. Changes in surface atomic order show no direct effect on measured electronic features. Furthermore, CdSe exhibits no intrinsic surface state features which can account for its Schottky barrier formation with metals.  相似文献   

3.
In order to study the magnetic anisotropy of transition metal ultrathin films, we have performed tight-binding calculations including spin-orbit coupling. Beside the anisotropy energy these calculations also yield the orbital moment, which turns out to be much more anisotropic than in bulk materials. The effects of interfacial mismatch and roughness are discussed within phenomenological models. We also briefly review experimental results on the magnetic surface anisotropy (MSA) in transition metal ultrathin films. In some cases such as Au/Co/Au(111) sandwiches the MSA wins the competition with the shape anisotropy arising from the magnetostatic energy: below a critical thickness this leads to aperpendicular spontaneous magnetization. We show the effects of this crossover on the hysteresis loops and on the magnetoresistance, and the effects of interface roughness on the critical thickness.  相似文献   

4.
Molecular dynamics simulations are performed using isobaric–isoenthalpic (NPH) ensembles to study the effect of internal defects in the form of voids on the melting of bulk and nano-particulate aluminum in the size range of 2–9 nm. The main objectives are to determine the critical interfacial area required to overcome the free energy barrier for the thermodynamic phase transition, and to explore the underlying mechanisms for defect-nucleated melting. The inter-atomic interactions are captured using the Glue potential, which has been validated against the melting temperature and elastic constants for bulk aluminum. A combination of structural and thermodynamic parameters, such as the potential energy, Lindemann index, translational-order parameter, and radial-distribution functions, are employed to characterize the melting process. The study considers a variety of void shapes and sizes, and results are compared with perfect crystals. For nano aluminum particles smaller than 9 nm, the melting temperature is size dependent. The presence of voids does not impact the melting properties due to the dominancy of nucleation at the surface, unless the void size exceeds a critical value beyond which lattice collapse occurs. The critical void size depends on the particle dimension. The effect of pressure on the particulate melting is found to be insignificant in the range of 1–300 atm. The melting behavior of bulk aluminum is also examined as a benchmark. The critical interfacial area required for the solid–liquid phase transition is obtained as a function of the number of atoms considered in the simulation. Imperfections such as voids reduce the melting point. The ratio between the structural and thermodynamic melting points is 1.32. This value is comparable to the ratio of 1.23 for metals like copper.  相似文献   

5.
Electrical properties of AlyGa1-yN/AlxGa1-xN/AlN/GaN structure are investigated by solving coupled Schrödinger and Poisson equation self-consistently. Our calculations show that the two-dimensional electron gas (2DEG) density will decrease with the thickness of the second barrier (AlyGa1-yN) once the AlN content of the second barrier is smaller than a critical value yc, and will increase with the thickness of the second barrier (AlyGa1-yN) when the critical AlN content of the second barrier yc is exceeded. Our calculations also show that the critical AlN content of the second barrier yc will increase with the AlN content and the thickness of the first barrier layer (AlxGa1-xN).  相似文献   

6.
周远  李艳秋 《光学学报》2008,28(6):1091-1095
为有效控制成像线宽,研究了高数值孔径光学光刻中的体效应并提出一种光刻胶膜层优化方法,利用成像中的摇摆效应平衡体效应对成像线宽的影响.首先根据系统数值孔径和照明相干因子确定成像光入射角分布,相对所有入射光求出光刻胶底面单位体积吸收的能量平均值.然后用最小二乘法拟合得到能量平均值随光刻胶厚度变化的解析式并求能量平均值的导数.最后通过优化光刻胶膜层,使能量平均值的导数绝对值最小.按优化结果设计光刻胶膜层,利用商业光刻软件Prolith9.0得到成像线宽随光刻胶厚度的变化.结果表明,该方法能在30~40nm的光刻胶厚度范围,有效地减小由体效应引起的成像线宽的变化.  相似文献   

7.
We have studied the thermosensitive property of methylcellulose (MC) thin films supported on Si substrate by static sessile drop contact angle measurements, and their surface properties and thin film structure by x-ray reflectivity (XRR) and atomic force microscopy (AFM) techniques. From the static sessile drop contact angle measurements, the MC thin films showed the characteristic hydrophilic-to-hydrophobic transition at ~70?°C, which is the lower critical solution temperature of the bulk solution volume phase separation transition. For films with thickness d ≤ R(g), the onset of such a transition is affected by the film thickness while very thick films, d ? R(g), yielded higher contact angles. Annealing the MC thin films with thicknesses ~200 ? (near the radius of gyration, R(g), of the polymer) below the bulk glass transition temperature (T(g) ~ 195?° C) would not change the hydrophobic switch nature of the film but annealing 'at' and above the bulk T(g) would change its surface property. From surface topography images by AFM, there were no significant changes in either the roughness or the film texture before and after annealing. With XRR data, we were able to determine that such changes in the surface properties are highly correlated to the film thickness changes after the annealing process. This study, we believe, is the first to examine the thermal annealing affects on the thermal response function of a thermoresponsive polymer and is important for researching how to tailor the hydrophobic switching property of MC thin films for future sensing applications.  相似文献   

8.
The bulk and surface chemical composition of Renaissance coins minted at Gubbio (Central Italy) from 1508 to 1516 and from 1521 to 1538 by Francesco Maria della Rovere is investigated by means of the combined use of different analytical techniques such as scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), and optical microscopy (OM). The aim of the work is to determine the bulk chemical composition of these commonly used coins at Gubbio, to ascertain their surface nature and if they were coated by a thin film of silver or other white metals similar to silver.The results indicate that the coins were produced by coating a copper core with a thin film of silver and antimony, and also with lead whose thickness is of a few microns which is now scarcely present because the original silvered surface was almost entirely removed by degradation phenomena. Furthermore, the SEM+EDS results show that the surface content of silver and antimony cannot be attributed to long-term selective corrosion phenomena leaving the coin slightly silver or antimony enriched. Therefore, the presence of silver or apparently silver-like metals i.e. antimony and lead, could be considered as a deliberate surface finishing of the coins obtained via inverse segregation or intentional selective corrosion based on pickling solutions or a combination of them. From a historical point of view the presence of a Ag or Sb film on the surface of the coins discloses the occurrence of a period of economic difficulties. PACS 68.55.Jk; 68.35.Dv; 68.37.Hk; 68.55.Nq; 81.05.Bx  相似文献   

9.
The surface dipole barrier D of metals is calculated from experimental work functions and theoretical bulk chemical potentials obtained by the Augmented-Spherical-Waves method of Williams et al. Two independent linear relations between D and the electron density at the boundary of Wigner-Seitz cells are found for transition and non transition metals. An explanation for this difference is offered.  相似文献   

10.
The recent improvements on the technology for developing high-quality thin magnetic films has renewed the interest in the study of surface effects in both static and dynamic magnetic responses. In this work, we use a Monte-Carlo algorithm with Metropolis dynamics together with a spreading of damage technique to study the interplay between the effects of finite thickness and surface ordering field in thin ferromagnetic Ising (S=1/2) films. We calculate, near the bulk critical temperature and several values of the surface field, the dependence on the film thickness of the average magnetization M and Hamming distance D. We employ a finite size scaling analysis to show that both obey an effective one-parameter scaling but exhibit distinct characteristic surface fields. At their corresponding characteristic surface fields both M and D become roughly thickness independent and we estimate the critical exponent characterizing the behavior of the typical scaling lengths. Received 29 March 1999 and Received in final form 21 April 1999  相似文献   

11.
We construct a generalized gradient approximation of the exchange-correlation energy that satisfies the nonuniform scaling in one dimension and is accurate in the whole quasi-two-dimensional (Q2D) regime. Using spatial and energetic analyses of metal (111) surfaces, we show that the Q2D behavior is important at the surface of most transition metals, and that the here proposed Q2D-generalized gradient approximation functional predicts for these metals accurate surface energies as well as bulk properties.  相似文献   

12.
用速度不同的(动能EK=272和357keV,速度v=1.14×106和1.72×106m/s)的高电荷态离子40Ar17+分别入射金属Be表面,同时测量这种相互作用过程中产生的近红外光谱线和X射线谱。实验结果表明,在低速范围内(速度小于玻尔速度vBohr=2.19×106m/s),速度较小的40Ar17+离子在到达金属的表面临界距离Rc到进入表面(2—3原子层)的进程中,形成了较多的高激发态Ar原子,其退激辐射较强的光谱线,进而验证了经典过垒模型。  相似文献   

13.
姜向伟  李树深 《中国物理 B》2012,21(2):27304-027304
By using the linear combination of bulk band (LCBB) method incorporated with the top of the barrier splitting (TBS) model, we present a comprehensive study on the quantum confinement effects and the source-to-drain tunneling in the ultra-scaled double-gate (DG) metal-oxide-semiconductor field-effect transistors (MOSFETs). A critical body thickness value of 5 nm is found, below which severe valley splittings among different X valleys for the occupied charge density and the current contributions occur in ultra-thin silicon body structures. It is also found that the tunneling current could be nearly 100% with an ultra-scaled channel length. Different from the previous simulation results, it is found that the source-to-drain tunneling could be effectively suppressed in the ultra-thin body thickness (2.0 nm and below) by the quantum confinement and the tunneling could be suppressed down to below 5% when the channel length approaches 16 nm regardless of the body thickness.  相似文献   

14.
利用两步原位电子束蒸发技术,在Si(111)衬底上制备了MgB2-B-MgB2超导SNS约瑟夫森夹心结.夹心硼(B)层厚度从10nm到80nm范围内MgB2-B-MgB2/Si(111)薄膜表现出明显的SNS约瑟夫森结特性,而在5nm和100nm处薄膜分别是整体超导和正常金属特性.在同一温度下,随着硼层厚度的增加,临界结电流减小,对同一厚度下,临界结电流随着温度的增加而减小.同时,实验指出,夹心硼SNS超导MgB2约瑟夫森结的电流-电压(I-V)曲线具有回滞现象,符合SM模型.  相似文献   

15.
A theory of surface superconductivity induced by an external electric field in superconducting semimetals, metals and semiconductors is presented. It is shown that the inhomogeneous surface superconducting state deeply penetrates into the bulk of the sample. The dependence of the critical surface temperature and magnetic field on the external electric field is calculated.  相似文献   

16.
The dependence of two-dimensional electron gas (2DEG) density and distribution in an AlxGa1-xN/AlN/GaN heterostructure on the thicknesses of the AlxGa1-xN barrier layer and the AlN interfacial layer are investigated theoretically. A competitive contribution of the AlGaN and AlN layers to the 2DEG density is revealed. For an AlN interfacial layer thinner than a critical value dcAlN, the 2DEG density is dominated by the AlGaN barrier and the 2DEG density increases with the increase of the AlGaN barrier thickness, as in the case of a simple AlGaN/GaN heterostructure. While the AlN interfacial layer will take the dominant contribution to the 2DEG density as its thickness exceeds dcAlN. In this case, the increase of AlGaN barrier layer thickness leads to the decrease of the 2DEG density. Detailed calculations show that the critical AlN thickness increases with the increase of Al content in the AlGaN barrier. PACS 85.30.De; 73.40.Kp; 02.60.Cb  相似文献   

17.
Separation of intrinsic and extrinsic intensity contributions to plasmon peaks in X-ray photoelectron spectra of free-electron like metals (Me) such as Be, Na, Mg, Al and semiconductors as Si and Ge, necessary for the accurate determination of the thickness of overlayers in the range of a few nanometers, and their composition, is difficult because of their more or less coincident energies. The intrinsic bulk and surface plasmon contributions to Me 2p spectra can be determined separately from the intensities of the metallic and oxidic main peak as obtained from a series of spectra recorded from the unoxidised metal and the oxidised metal with different oxide-film thicknesses. In the present work, this method was applied to XPS Mg 2p spectra. It was shown that the method is very sensitive to deviations in the measured data, and therefore a careful error analysis is required, which has been developed in this work. Furthermore, an alternative method based on the same theory was proposed. This method yielded values of 0.17 and 0.06 for the intrinsic bulk and surface plasmon contributions to the Mg 2p spectrum relative to the Mg 2p main peak for a detection angle of 45°. It was demonstrated that the values obtained for the intrinsic bulk and surface excitation contributions determined according to both methods depend on the oxide-thickness range investigated. This observation indicates that commonly applied simplifying assumptions for the oxidation behaviour of Mg, like a layer-by-layer growth mechanism and/or the development of a homogeneous oxide with bulk MgO properties, as for composition and band gap values, do not hold. The pronounced effect of neglect of the intrinsic plasmon intensity contributions on the thickness values determined for MgO films on Mg was shown.  相似文献   

18.
Hall mobility and major scattering mechanisms in surface and buried MBE grown strained InGaSb quantum well (QW) MOSFET channels with in‐situ grown Al2O3 gate oxide are analyzed as a function of sheet hole density, top‐barrier thickness and temperature. Mobility dependence on Al0.8Ga0.2Sb top‐barrier thickness shows that the relative contribution of interface‐related scattering is as low as ~30% in the surface QW channel. An InAs top capping layer reduces the interface scattering even further; the sample with 3 nm total top‐barrier thickness demonstrates mobility of 980 cm2/Vs giving sheet resistance of 4.3 kΩ/sq, very close to the minimum QW resistance in the bulk. The mobility–temperature dependences indicate that the interface‐related scattering is dominated by remote Coulomb scattering at hole densities <1 × 1012 cm–2. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
Flux creep measurements on a HgBa2Ca2Cu3O8+x ceramics are reported. The results of the magnetic relaxation measurements are analyzed both by assuming that the pinning is due to the existence of a surface barrier or exclusively caused by bulk pinning. The action of both the surface and the bulk barriers is evidenced. At 70 K, a very high critical current density of the surface currents is determined, which is higher than the critical current density of the bulk. The field and temperature dependence of the pinning behaviour reflects mainly bulk pinning in 2D. The measurements were repeated after 4 and 12 months to investigate the influence of aging. A destruction of the superconducting properties of the grain boundaries accompanied by a degradation of the surfaces of the grains with time is proved.  相似文献   

20.
We present a density-functional theory trend study addressing the incorporation of oxygen into the basal plane of the late 4d transition metals (TMs) from Ru to Ag. Occupation of subsurface sites is always connected with a significant distortion of the host lattice, rendering it initially less favorable than on-surface chemisorption. Penetration starts only after a critical coverage theta(c), which is lower for the softer metals towards the right of the TM series. The computed theta(c) are found to be very similar to those above which the bulk oxide phase becomes thermodynamically more stable, thus suggesting that the initial incorporation of O actuates the formation of a surface oxide on TM surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号