首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用密度泛函理论系统的研究了单壁碳纳米管的曲率对Rh原子在锯齿型碳管内外的吸附行为, 发现Rh原子在管外吸附比管内稳定; 随着碳管管径的增加, 曲率减小, 管内外吸附能的差值逐渐减小, 接近Rh原子在石墨烯上的吸附能. 电荷密度分析表明, 由于卷曲效应使碳纳米管管外的电荷密度大于管内, 随着曲率减小, 这种差别逐渐减小. 管内外吸附Rh原子的Bader电荷差值及局域态密度差别亦随着曲率的下降而减小, 这与Rh原子在管内外吸附能的变化规律相一致.  相似文献   

2.
Rh在单壁碳纳米管上吸附的密度泛函理论研究   总被引:1,自引:0,他引:1       下载免费PDF全文
本文利用密度泛函理论研究了Rh原子在(6,6)单壁碳纳米管内外的吸附行为. 通过对Rh在单壁碳纳米管上不同吸附位的吸附构型与吸附能的研究发现: Rh吸附在管内、外的洞位最稳定, 且管外吸附比在管内强. 这是由于单壁碳纳米管的卷曲效应使得管外电荷密度比管内大造成的. 态密度分析表明, 吸附在管内外的Rh原子的5s电子均转移到了4d轨道上; Rh原子4d轨道上的电子转移到了(6, 6)碳管上, 使Rh带正电, 碳管带负电. 结合能带分析表明, Rh原子吸附在管内磁性较弱, 而吸附在管外较强. 关键词: 密度泛函理论 单壁碳纳米管 Rh原子 吸附  相似文献   

3.
刘莎  吴锋民  滕波涛  杨培芳 《物理学报》2011,60(8):87102-087102
碳纳米管曲率与卷曲方式是同时存在并影响金属原子在碳纳米管内外吸附行为的重要因素, 单独研究卷曲方式对金属吸附行为的影响较困难. 选取曲率相近、卷曲方式不同的扶手椅型(6, 6)、锯齿型(10, 0)与手性(8, 4)单壁碳纳米管(SWCNT), 利用密度泛函理论研究了Rh原子在SWCNT内外的吸附行为. 构型优化表明:由于SWCNT卷曲方式不同, 导致Rh原子在(6, 6),(10, 0)与(8, 4)SWCNT内外吸附的稳定构型不同; 不同卷曲方式亦使SWCNT与Rh原子相互作用的C原子不同, 导致Rh 关键词: 密度泛函理论 单壁碳纳米管 Rh原子 卷曲方式  相似文献   

4.
By using a linear scaling self-consistent charge, density functional tight-binding (SCC-DFTB) method and an ab intio Dmol3 calculation, the energy and Young's modulus as a function of tube length for (10, 0) single-walled carbon nanotubes (SWCNTs) are investigated. It was found that with increasing the length of SWCNTs the Young's modulus increases rapidly, then, there is a slow increase, which ultimately approaches a constant value after the length is increased to ~20 nm, whereas a reversed variation tendency was found for the average energy of atoms in SWCNTs with a change of the tube length. We found that the characters of the length-dependent energy and Young's modulus stem from the changed Py-DOS of atoms in the ending region of the tube. Here one simple formula is proposed for quantitatively explaining the length-dependent energy and modulus.  相似文献   

5.
范冰冰  王利娜  温合静  关莉  王海龙  张锐 《物理学报》2011,60(1):12101-012101
本文采用第一性原理的密度泛函理论,主要以(6,6)Armchair型,(11,0)Zigzag型单壁碳纳米管为研究对象,研究了水分子链在碳纳米管内部吸附的稳定结构,以及结合能随其结构的变化.结果表明:当水分子链受限于碳纳米管内部时,引起碳纳米管直径收缩,这主要是由于水分子链与碳纳米管之间的氢键作用以及范德华弱相互作用所引起的.随着碳纳米管半径的增加,两种单体之间的结合能逐渐减小,但当碳纳米管半径增加至6.78时,其结合能又有所增加,这是由于在优化过程中,水分子链单体之间的氢键作用大于水分子链与碳纳米管之 关键词: 水分子链/单壁碳纳米管 密度泛函理论 结构稳定性  相似文献   

6.
ABSTRACT

Structures of small lengths of capped (3,3), (4,4) and (5,5) single-walled carbon nanotubes (SWCNTs) and their structures decorated by Pt atom and Ptn clusters (n = 2–4) were obtained using density functional theory calculations. Binding abilities of Pt atom and Ptn clusters on the outer surface of SWCNTs at various adsorption sites were explored. Adsorptions of H2 onto Pt atom of the Pt-decorated (3,3), (4,4) and (5,5) SWCNTs were studied and their adsorption energies are reported. The thermodynamic properties and equilibrium constants for H2 adsorptions on the Pt4-decorated (3,3), (4,4) and (5,5) SWCNTs were obtained. The adsorption of H2 on the Pt atom of the Pt4/(3,3) SWCNT was found to be the most preferred reaction of which enthalpy and free energy changes at room temperature are ?46.61 and ?23.99 kcal/mol, respectively.  相似文献   

7.
田付阳  申江 《中国物理 B》2011,20(12):123101-123101
We investigate the structural, electronic and adsorption properties of one single CO molecule adsorbed on RhN (N = 2-19) clusters, using the density-functional theory in the spin-polarized generalized gradient approximation. It is found that the structural growth model of the RhN clusters transforms from double layers (N = 12-16) to three layers (N = 17-19). Three different adsorption types are the atop site adsorption for N = 6, 8, 9, 11, 12, the bridge site adsorption for N = 2-5, 7, 10, 13-15, 17 and the face adsorption for N = 16, 18, 19. The adsorption abilities of RhN clusters are related to C-O bond length, vibrational frequency, adsorption energy and the charge transfer between CO and Rh clusters as well as the electronic density of state. With the increase of Rh cluster size, the adsorption energy of CO adsorbed on RhN clusters tends to be 2.2 eV-2.3 eV, which is 0.2 eV-0.3 eV larger than the theoretical value (about 2.0 eV) of CO molecule adsorption on clean Rh (111) surface.  相似文献   

8.
张安超  孙路石  向军  郭培红  刘志超  苏胜 《物理学报》2011,60(7):73103-073103
采用密度泛函理论中的广义梯度近似对Hg与小团簇Au qn (n=1—6, q=0, +1, -1)的相互作用进行了系统研究. 结果表明,除Au5+,-团簇外,前线分子轨道理论可以成功预测大部分Au n Hg q 复合物的最低能量结构. Aun团簇对Hg的吸附受团簇尺寸大小和团簇所携带电荷的影 关键词: 密度泛函理论 汞 金团簇 吸附能  相似文献   

9.
The stability and electronic properties of the Rh-doped ruthenium clusters and their reactivity towards NH3 molecule have been studied using DFT calculations with the BLYP-D3/SDD level of theory. The results show that the doping of Ru clusters with Rh atom improves the catalytic performances of pure Ru clusters, and the Ru5Rh and Ru7Rh clusters are assumed to be less reactive than their neighbours. The interaction of NH3 with clusters exhibits that the Ru atoms are preferred adsorption sites for the NH3 molecule, and the adsorption takes place between the Ru atom of clusters and the N atom of NH3 molecule. The adsorption energies of NH3 on RunRh clusters are in the range of ?101.5 to ?218.4?kJ?mol?1, suggesting a strong adsorption between both species. Upon adsorption process, the electronic properties of the RunRh clusters were substantially changed. The variation of EgEg) for the RunRh (n?≥?7) clusters is very important (ΔEg?≥?55%), suggesting that these clusters are very sensitive to the NH3 molecule. Hence, these clusters can be employed as nanosensors for the detection of the NH3 gas.  相似文献   

10.
We have applied density functional calculations to investigate simultaneous existence of Stone–Wales (SW) and carbon ad-dimer (CD) defects in the zigzag (n, 0) n=5, 6, 7, 8, 9, and 10 SWCNTs, with an extensive search by considering two different orientations of defects. According to our results, the adsorption of a carbon dimer on a hexagonal ring of SWCNTs is easier than the rotation of a C–C bond trough the SW rearrangement. Moreover, the formation of a carbon dimer on the exterior sidewalls of an SW defective SWCNT or the rotation of a C–C bond of a CD defective SWCNT is more favorable than those on the perfect ones. Defect formation energy shows a strong dependence on the both SWCNT radius and defect orientation. The reactivity of SW–CD defective SWCNTs through chemisorption of hydrogen atoms on the central bonds of defect sites shows the thermodynamically lower preference of additions for the CD defective sites in comparison to SW defective sites. Histograms of the 13C NMR chemical shifts of SW–CD defective SWCNTs exhibit individual signals for defect sites, which can be attributed to azupyrene- and pentalelene-like structures for SW and CD defect sites, respectively.  相似文献   

11.
The adsorption energies, bond order, atomic charge, optical properties, and electrostatic potential of nitrogen molecules of armchair single-walled carbon nanotubes (SWCNTs) and nitrogen-doped single-walled carbon nanotubes (N-SWCNTs) were investigated using density functional theory (DFT). Our results show that adsorption of the \(\hbox {N}_{2}\) molecules on the external wall of a nanotube is more effective than on the internal wall in SWCNTs. The results show that \(\hbox {N}_{2}\) molecule(s) are weakly bonded to SWCNTs and N-SWCNTs through van der Waals-type interactions. The interaction of \(\hbox {N}_{2}\) molecules with SWCNTs and N-SWCNTs is physisorption as the adsorption energy and charge transfer are small, and adsorption distance is large. The electronic transitions from the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO) (\(\hbox {H}\rightarrow \hbox {L}\)) have the maximum wavelength and the lowest oscillator strength. The potential sensor on the surface of pristine SWCNTs and N-SWCNTs for the adsorption of \(\hbox {N}_{2}\) molecule(s) is investigated. The N-loaded single-walled carbon nanotube is introduced as a better \(\hbox {N}_{2}\) molecule(s) detector when compared with SWCNTs.  相似文献   

12.
We theoretically studied the encapsulation of azafullerene (C59N) inside the single-walled carbon nanotubes (SWCNTs) from the first-principles. Adsorption energy is calculated, and the azafullerene affinities for the typical semiconducting and metallic nanotubes are investigated and compared with those of pure C60 fullerene. It has been found that the azafullerene as well as the fullerene affinity for the semiconducting nanotubes is stronger than that for the metallic ones, and the energy values and binding distances are typical for the physisorption. Our first-principles results indicate that the interaction between SWCNTs and azafullerenes is comparable with the nanotubes-C60 system. The charge analysis shows, however, that the charges have been transferred from the cage to the tube in the azafullerene peapods, while in the fullerene peapods the charges were found to be transferred from the tube to the fullerene nanocage. Furthermore, it was found that the interaction between the considered fullerenes and host nanotubes strongly depends on the tube diameters.  相似文献   

13.
A variation of the Pearson-Rayleigh random walk in which the steps are i.i.d. random vectors of exponential length and uniform orientation is considered. Conditioned on the total path length, the probability density function of the position of the walker after n steps is determined analytically in one and two dimensions. It is shown that in two dimensions n = 3 marks a critical transition point in the behavior of the random walk. By taking less than three steps and walking a total length l, one is more likely to end the walk near the boundary of the disc of radius l, while by taking more than three steps one is more likely to end near the origin. Somehow surprisingly, by taking exactly three steps one can end uniformly anywhere inside the disc of radius l. This means that conditioned on l, the sum of three vectors of exponential length and uniform direction has a uniform probability density. While the presented analytic approach provides a complete solution for all n, it becomes intractable in higher dimensions. In this case, it is shown that a necessary condition to have a uniform density in dimension d is that 2(d + 2)/d is an integer, equal to n + 1.  相似文献   

14.
The geometric and electronic structures of Eu doped single-walled carbon nanotubes (SWCNTs) have been studied using density functional theory. Three different doping configurations are considered. All of these configurations are stable upon relaxation, and Eu atom on the top of the inside hole site is the most favorable configuration for most nanotubes, except (3,3) CNT. The formation energies vary regularly with the same trend as in the Co and Fe doped cases. The electronic structures studies indicate that the charge transfer basically occurs between 5d6s of Eu and the antibonding orbital of the C6 ring of the SWCNT. Eu atom is monovalent for the exohedral and substitutional doping, and for the endohedral doping of large radius nanotubes; it is bivalent for endohedral doping of (3,3) tube. As the radius increases, the net charges on Eu atom steadily decrease for exohedral and endohedral doping. The magnetic moments of Eu atoms are preserved in all of the configurations, but they vary with the radius of nanotube and adsorbing sites.  相似文献   

15.
王昆鹏  师春生  赵乃勤  杜希文 《物理学报》2008,57(12):7833-7840
采用基于密度泛函理论的平面波赝势方法和广义梯度近似,对未掺杂、掺B、掺N的碳纳米管(CNT)不同位置上Al原子的吸附进行了几何优化,计算了吸附Al、掺杂前后CNT的能带结构、态密度、差分电荷密度、电荷布居数和吸附能.计算结果表明,掺B使CNT形成缺电子状态,利于具有自由电子的Al原子的吸附结合,可显著提高Al在金属性的(5,5)CNT和半导性的(8,0)CNT外壁的吸附能;掺杂N形成多电子状态,在费米能级附近半满的施主能级也利于填充Al的价电子,改善Al在(5,5)CNT和(8,0)CNT外壁的吸附结合性 关键词: 密度泛函理论 单壁碳纳米管 B(N)掺杂 Al原子吸附  相似文献   

16.
The adsorption of glucose molecule on single-walled carbon nanotubes (SWCNTs) is investigated by density functional theory calculations. Adsorption energies and equilibrium distances are evaluated, and glucose binding to the typical semiconducting and metallic nanotubes with various diameters and chirality are compared. We also investigated the role of the structural defects on the adsorption capability of the SWCNTs. We could observe larger adsorption energies for the larger diameters semiconducting CNTs, while the story is paradoxical for the metallic CNTs. The obtained results reveal that the adsorption energy is significantly higher for nanotubes with higher chiral angles. Finally, the adsorption energies are calculated for defected nanotubes for various configurations such as glucose molecule approaching to the pentagon, hexagon, and heptagon sites in the tube surface. We find that the respected defects have a minor contribution to the adsorption mechanism of the glucose on SWNTs. The calculation of electron transfers and the density of states supports that the electronic properties of SWCNTs do not change significantly after the gluycose molecular adsorption. Consequently, one can predict that presence of glucose would neither modify the electronic structure of the SWCNTs nor direct to a change in the conductivity of the intrinsic nanotubes.  相似文献   

17.
The adsorption of glucose molecule on single-walled carbon nanotubes(SWCNTs)is investigated by density functional theory calculations.Adsorption energies and equilibrium distances are evaluated,and glucose binding to the typical semiconducting and metallic nanotubes with various diameters and chirality are compared.We also investigated the role of the structural defects on the adsorption capability of the SWCNTs.We could observe larger adsorption energies for the larger diameters semiconducting CNTs,while the story is paradoxical for the metallic CNTs.The obtained results reveal that the adsorption energy is significantly higher for nanotubes with higher chiral angles.Finally,the adsorption energies are calculated for defected nanotubes for various configurations such as glucose molecule approaching to the pentagon,hexagon,and heptagon sites in the tube surface.We find that the respected defects have a minor contribution to the adsorption mechanism of the glucose on SWNTs.The calculation of electron transfers and the density of states supports that the electronic properties of SWCNTs do not change significantly after the gluycose molecular adsorption.Consequently,one can predict that presence of glucose would neither modify the electronic structure of the SWCNTs nor direct to a change in the conductivity of the intrinsic nanotubes.  相似文献   

18.
The structural, electronic and magnetic properties of hcp transition metal (TM = Fe, Co or Ni) nanowires TM4 encapsulated inside zigzag nanotubes C(m, 0) (m = 7, 8, 9, 10, 11 or 12), along with TM n (n = 4, 10 or 13) encapsulated inside C(12, 0), have been systematically investigated using the first-principle calculations. The results show that the TM nanowires can be inserted inside a variety of zigzag carbon nanotubes (CNTs) exothermically, except from the systems TM4@(7, 0) and TM13@(12, 0) which are endothermic. The charge is transferred from TM nanowires to CNTs, and the transferred charge increases with decreasing CNT diameter or increasing nanowire thickness. The magnetic moments of hybrid systems are smaller than those of the freestanding TM nanowires, especially for the atoms on the outermost shell of the nanowires. The magnetic moment per TM atom of TM/CNT system increases with increasing CNT diameter or decreasing nanowire thickness. Both the density of states and spin charge density analysis show that the spin polarization and the magnetic moments of all hybrid systems mainly originate from the TM nanowires, implying these systems can be applied in magnetic data storage devices.  相似文献   

19.
It is shown in this paper that the form of the electron concentration distribution along the radius of the positive column in an oxygen discharge depends on the relative concentration of negative ions α = n-/ne in the plasma. It is found that in discharges in electronegative gases everywhere along the radius of the positive column, where α > 10, the electron concentration is equal to its value on the tube axis (plane electron distribution along the radius of the positive column). It is shown that an increase of the discharge current leads to the decrease of α and to the change of the distribution of profile ne from plane to parabolic. However, weak laminar oxygen pumping along the positive column leads to more plane an electron concentration distribution because an increase of the negative ions concentration takes place. It is induced by the decrease of oxygen atoms density on account of their carrying out by the flow.  相似文献   

20.
Interaction of one iron atom with pristine zigzag boron nitride nanotubes with different diameters, ranging from (8,0) to (12,0), have been investigated using density functional theory calculations. Departing from four initial configurations, considering each of them interacting with the tubes’ walls either from inside or outside, we have analyzed the adsorbate migration to the most favorable positions together with the related binding energies and the equilibrium distances as well as the electronic structure of the final systems. It was observed that the smaller the radius of the tube the lower is the binding energy for all studied structures, and also that the inner configuration is more stable than the outer one for small radius. For the preferred position for the iron atom, it was seen that it varies according to the starting configuration and that the iron-first-nitrogen-neighbor bond length works as a constraint in determining the most favorable position for the adsorbate. Finally, for the electronic structure, it was observed that the presence of the dopant introduces localized levels at the band gap of the nanotubes and that those levels are mostly related to the orbitals 3d and 4s of the iron atom. For the inside case, as a consequence of higher hybridization and a confinement effect, the gap closure is more pronounced for small diameter tubes. For all studied structures, it was observed a net-spin-polarization equal to 4 μ B.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号