首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
采用了TIG对核聚变用316LN奥氏体不锈钢进行焊接,并对焊接接头进行了焊后热处理,利用光学显微镜、扫描电镜分析手段研究了焊后热处理对焊接接头微观组织和力学性能的变化。试验结果表明,焊缝中为奥氏体组织,并未发现第二相析出物存在。焊后热处理对接头的拉伸性能影响不大,均断裂在母材位置,但显著提高了接头的延伸率。接头低温冲击试验也展现了良好的抗低温冲击性能。断口分析发现,接头呈韧性断裂。  相似文献   

2.
对聚变堆用316LN奥氏体不锈钢熔化极活性气体保护电弧焊(MAG焊)接接头进行不同温度的热处理,并在液氮温度下进行夏比冲击试验。利用光学显微镜、扫描电镜、EDS分析等研究了热处理温度对接头微观组织、断口形貌及析出物的影响。结果表明,873K热处理可以显著提高焊缝金属冲击韧性,但随着热处理温度的上升,焊缝金属逐渐出现沿着晶界分布的析出物,韧性逐渐下降。断口均为延性断裂,但随着热处理温度的升高,韧窝变浅、数量变少。韧窝底部存在球状析出和不规则状析出,球状析出在焊接过程中产生,不因热处理温度而变化,不规则析出随着热处理温度的升高逐渐增多。焊材中的Mo含量过高导致焊缝金属中Mo在晶界大量偏聚,促进了σ相的析出,当σ相在晶界形成连续分布后,焊缝金属冲击韧性显著下降。  相似文献   

3.
针对不锈钢焊接接头应力及组织分布不均匀,容易导致应力腐蚀开裂的问题,采用不等强度激光冲击波对316奥氏体不锈钢焊接接头进行处理。通过应力腐蚀试验、残余应力测试及微观组织分析,研究了激光冲击强化对焊接接头应力腐蚀抗性的影响及其作用机理。试验结果表明:激光冲击强化将焊接件的应力腐蚀断裂时间提高了33.48%。激光冲击波的作用,在焊接接头部位引入了高数值的残余压应力,一方面消除了热影响导致的残余拉应力,同时抵消了拉伸工作载荷的作用,降低局部应力梯度,从而延缓表面钝化膜的破裂;另一方面,激光冲击使焊接接头不同区域之间的微观组织均匀和细化,提高了微裂纹萌生的条件,降低了金属发生阳极溶解的可能性。两种因素的共同作用,使得不锈钢焊接接头的抗应力腐蚀性能显著增强。  相似文献   

4.
研究了低活化马氏体钢(CLF-1)热等静压(HIP)焊接接头的性能,经980℃/1h/空冷+740℃/2h/空冷的性能热处理后,接头组织保持着CLF-1钢母材回火马氏体组织;常温拉伸性能与母材相当,断口为韧窝状且有第二相粒子产生,为塑性断裂且断于焊缝;常温冲击功最高为母材的26.2%。初步分析认为焊接表面制备状态、表面污染物、表面清洗状态、表面氧化膜都会影响基体原子充分扩散,导致界面扩散层不均匀,焊缝裂纹敏感性增强,冲击功低,且不稳定。  相似文献   

5.
研究了低活化马氏体钢(CLF-1)热等静压(HIP)焊接接头的性能,经980℃/1h/空冷+740℃/2h/空冷的性能热处理后,接头组织保持着CLF-1钢母材回火马氏体组织;常温拉伸性能与母材相当,断口为韧窝状且有第二相粒子产生,为塑性断裂且断于焊缝;常温冲击功最高为母材的26.2%。初步分析认为焊接表面制备状态、表面污染物、表面清洗状态、表面氧化膜都会影响基体原子充分扩散,导致界面扩散层不均匀,焊缝裂纹敏感性增强,冲击功低,且不稳定。  相似文献   

6.
对用W19123L 为焊丝的聚变堆用低活化CLF-1 钢与316L 钢的钨极氩弧焊(TIG)焊接接头金相组织及性能进行了初步研究。结果表明:焊接接头成型良好、无缺陷;金相组织表明焊接接头由CLF-1 侧(母材区、热影响区、熔合区)、过渡层、焊缝区、316L 侧(母材区、热影响区、熔合区)组成;室温拉伸试验结果优于母材的最低要求值;弯曲试验后的焊接接头内外表面完好,无裂纹产生,变形均匀;焊接接头冲击值成凹型分布,焊缝区冲击值最低,焊缝两侧热影响区冲击值次之,母材冲击值最高,316L 侧冲击值略高于CLF-1 侧,均满足焊接接头设计值;焊接接头上表面1.6mm 硬度波动较大,略高于1/2T 和下表面1.6mm 处,焊接接头1/2T 和下表面1.6mm 硬度分布较均匀,从CLF-1 侧到316L 侧有下降趋势。整体焊接性能基本稳定,满足异种钢焊接性能匹配要求。  相似文献   

7.
在150kV/39mA的焊接参数下进行了316L/RAFM钢电子束焊工艺实验,对接头微观组织与力学性能进行了测试分析。在存在磁偏转的情况下,有效焊接深度达到了18mm,且焊接接头性能良好。  相似文献   

8.
Bi2223/Ag高温超导带材连接技术的研究   总被引:4,自引:0,他引:4  
黄晖  王秋良 《低温物理学报》2003,25(Z1):220-222
钎焊连接是Bi2223/Ag高温超导带材实际应用最多的连接工艺,包括焊接温度、焊料和中间层设计等工艺环节.本文首先对PIT工艺制备的Bi2223/Ag高温超导带材开展了热处理温度-Ic影响试验,通过实验筛选出适合Bi系带材的焊接加热温度.用Sn96CuAg 、Sn60PbAg、Sn60PbSb等三种焊料进行了Bi2223/Ag高温超导带材钎焊实验,研究了钎焊工艺对焊接接头低温电阻影响,建立焊接接头电阻数学表达公式,并利用数学模型讨论了焊接中间层设计优化问题.  相似文献   

9.
薄壁壳体材料为45CrNiMoV超高强度钢,壳体结构复杂,具有深盲孔和厚薄不均等多种影响变形因素,热加工变形较大。并且受其特殊结构的局限,热加工变形直接影响了产品质量。为了有效地控制热加工变形,保证产品质量,提高生产效率,开展了薄壁壳体零件热加工变形控制工艺研究。针对薄壁壳体零件材料和结构特点,以及冷热加工工艺和热处理操作过程中存在的问题,采用计算流体动力学(CFD)技术进行数值模拟计算,数值模拟软件平台是大型CFD商业软件FLUENT,计算方法采用有限体积法,主要计算壳体零件淬火冷却过程中的温度分布及随时间的变化情况。根据理论分析和数值模拟计算结果进行实验研究,实验内容包括预备热处理实验、焊后调质处理实验、淬火装夹方法和夹具结构实验、焊接和热处理前工件结构实验以及焊接接头组织和力学性能实验。首先对经过热加工的试样进行硬度、力学性能和组织分析,然后设计壳体结构模拟试验件进行变形研究。用HR-150DT型电动洛氏硬度计检测硬度,用GX-7大型金相显微镜进行显微组织分析,在DLY-10A型万能材料试验机和JB6型冲击试验机上检验力学性能。  相似文献   

10.
Bi系超导材料的微波焊接及其显微结构研究   总被引:2,自引:0,他引:2       下载免费PDF全文
微波焊接技术近年来发展较快,它有下列优点:1)能耗低;2)升温速度快;3)接头质量高等。本文研究了Bi系超导材料微波焊接的可行性。结果表明,经855℃60h热处理后,焊接试样的Tc可达107K,与焊接前试样的Tc一致,焊区强度已经高于基体。利用电子探针对焊接前后的显微结构进行了比较,发现焊区组织致密,但在后处理过程中发生再结晶,导致焊区晶粒较大,焊缝变宽且焊区内存在较多杂相。 关键词:  相似文献   

11.
Present investigation reports on the effects of incorporating pre- and post-heating on the mechanical properties of laser-welded joints, in normal air condition. Two common types of steels, i.e. mild steel, and stainless steel were welded with Lumonic's MS 830 Nd3+:YAG laser machine, with an output capacity of 400 W. Due to the low integrated energy input required for laser welded joints, the welded region are often cooled too rapidly via conduction to the surrounding material and atmosphere, which leads to hardness discontinuities in the fusion and heat affected zone. The effects of in-process laser annealing on the mechanical properties and microstructure of laser-welded joints are important in any manufacturing operation. To improve the poor weld characteristics, this work investigates the use of automated dual-beam delivery system to implement a pre- or post-heating technique, simultaneously with the welding process. The results show that proper selection of the control parameters for the pre- or post-heating can reduce the hardness of the weld significantly and improve the welded joints mechanical properties, such as higher tensile strength and better durability.  相似文献   

12.
After heat treatment of metal active gas arc welding (MAG weld) joints of 316LN austenitic stainless steel for fusion reactor at different temperatures, Charpy impact test at liquid nitrogen temperature was carried out. The effects of heat treatment temperature on microstructure, fracture morphology and precipitates were studied with optical microscope, SEM and EDS analysis. Results indicated that the impact toughness of weld metal could be significantly improved by 873K heat treatment. However, with the rising of heat treatment temperature, the precipitates were generated gradually along the grain boundary and a gradual decrease of toughness occurred as well. All fracture was ductile. The dimple became shallow and less with the increase of temperature. Spherical and irregular precipitates were found at the bottom of the dimple. The spherical precipitates generated during welding were free from the influence of the heat treatment, and the irregular precipitates increased with the rising of temperature. High content of Mo in filler materials led to a great segregation of Mo at the grain boundary, which would promote the precipitation of σ phase. Impact toughness of weld metal decreased significantly when continuous distribution of σ phase formed at grain boundary.  相似文献   

13.
This paper presents a study carried out on 3.5 kW cooled slab laser welding of 904 L super austenitic stainless steel. The joints have butts welded with different shielding gases, namely argon, helium and nitrogen, at a constant flow rate. Super austenitic stainless steel (SASS) normally contains high amount of Mo, Cr, Ni, N and Mn. The mechanical properties are controlled to obtain good welded joints. The quality of the joint is evaluated by studying the features of weld bead geometry, such as bead width (BW) and depth of penetration (DOP). In this paper, the tensile strength and bead profiles (BW and DOP) of laser welded butt joints made of AISI 904 L SASS are investigated. The Taguchi approach is used as a statistical design of experiment (DOE) technique for optimizing the selected welding parameters. Grey relational analysis and the desirability approach are applied to optimize the input parameters by considering multiple output variables simultaneously. Confirmation experiments have also been conducted for both of the analyses to validate the optimized parameters.  相似文献   

14.
Laser welding input parameters play a very significant role in determining the quality of a weld joint. The joint quality can be defined in terms of properties such as weld bead geometry, mechanical properties and distortion. Therefore, mechanical properties should be controlled to obtain good welded joints. In this study, the weld bead geometry such as depth of penetration (DP), bead width (BW) and tensile strength (TS) of the laser welded butt joints made of AISI 904L super austenitic stainless steel were investigated. Full factorial design was used to carry out the experimental design. Artificial Neural networks (ANN) program was developed in MatLab software to establish the relationships between the laser welding input parameters like beam power, travel speed and focal position and the three responses DP, BW and TS in three different shielding gases (Argon, Helium and Nitrogen). The established models were used for optimizing the process parameters using Genetic Algorithm (GA). Optimum solutions for the three different gases and their respective responses were obtained. Confirmation experiment has also been conducted to validate the optimized parameters obtained from GA.  相似文献   

15.
Dissimilar materials welded joints provide many advantages in power, automotive, chemical, and spacecraft industries. The weld bead integrity which is determined by process parameters plays a significant role in the welding quality during the fiber laser welding (FLW) of dissimilar materials. In this paper, an optimization method by taking the integrity of the weld bead and weld area into consideration is proposed for FLW of dissimilar materials, the low carbon steel and stainless steel. The relationships between the weld bead integrity and process parameters are developed by the genetic algorithm optimized back propagation neural network (GA-BPNN). The particle swarm optimization (PSO) algorithm is taken for optimizing the predicted outputs from GA-BPNN for the objective. Through the optimization process, the desired weld bead with good integrity and minimum weld area are obtained and the corresponding microstructure and microhardness are excellent. The mechanical properties of the optimized joints are greatly improved compared with that of the un-optimized welded joints. Moreover, the effects of significant factors are analyzed based on the statistical approach and the laser power (LP) is identified as the most significant factor on the weld bead integrity and weld area. The results indicate that the proposed method is effective for improving the reliability and stability of welded joints in the practical production.  相似文献   

16.
The technique to weld AISI 304 stainless steel to AISI 420 stainless steel with a pulsed Nd:YAG laser has been investigated. The main objective of this study was to determine the influence of the laser beam position, with respect to the joint, on weld characteristics. Specimens were welded with the laser beam incident on the joint and moved 0.1 and 0.2 mm on either side of the joint. The joints were examined in an optical microscope for cracks, pores and to determine the weld geometry. The microstructure of the weld and the heat affected zones were observed in a scanning electron microscope. An energy dispersive spectrometer, coupled to the scanning electron microscope, was used to determine variations in (weight %) the main chemical elements across the fillet weld. Vickers microhardness testing and tensile testing were carried out to determine the mechanical properties of the weld. The results of the various tests and examinations enabled definition of the best position for the incident laser beam with respect to the joint, for welding together the two stainless steels.  相似文献   

17.
This study is concerned with the effects of laser and arc arrangement on weld integrity for the hybrid laser arc welding processes. Experiments were conducted for a high-strength steel using a 4 kW Nd: YAG laser and a metal active gas (MAG) welding facility under two configurations of arc–laser hybrid welding (ALHW) and laser–arc hybrid welding (LAHW). Metallographic analysis and mechanical testing were performed to evaluate the weld integrity in terms of weld bead geometry, microstructure and mechanical properties. The morphology of the weld bead cross-section was studied and the typical macrostructure of the weld beads appeared to be cone-shaped and cocktail cup-shaped under ALHW and LAHW configurations, respectively. The weld integrity attributes of microstructure, phase constituents and microhardness were analyzed for different weld regions. The tensile and impact tests were performed and fracture surface morphology was analyzed by scanning electron microscope. The study showed that ALHW produced joints with a better weld shape and a more uniform microstructure of lath martensite, while LAHW weld had a heterogeneous structure of lath martensite and austenite.  相似文献   

18.
This article presents the results of comparative studies of mechanical properties and microstructure of nuclear fuel tubes and semifinished stainless steel items fabricated by consolidation of rapidly quenched powders and by conventional technology after high-temperature exposures at 600 and 700°C. Tensile tests of nuclear fuel tube ring specimens of stainless austenitic steel of grade AISI 316 and ferritic–martensitic steel are performed at room temperature. The microstructure and distribution of carbon and boron are analyzed by metallography and autoradiography in nuclear fuel tubes and semifinished items. Rapidly quenched powders of the considered steels are obtained by the plasma rotating electrode process. Positive influence of consolidation of rapidly quenched powders on mechanical properties after high-temperature aging is confirmed. The correlation between homogeneous distribution of carbon and boron and mechanical properties of the considered steel is determined. The effects of thermal aging and degradation of the considered steels are determined at 600°C and 700°C, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号