首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Nonlinear magnetotransport in a two-dimensional electron gas in one-dimensional lateral lattices fabricated from a selectively doped GaAs/AlAs heterostructure is investigated. One-dimensional potential modulation is imposed on the two-dimensional electron gas by means of a set of metal strips formed on the planar surface of Hall bars. The dependences of the differential resistance rxx on the magnetic field B < 0.5 T are studied at a temperature T = 1.6 K in lattices with a period of a ≈ 200nm. It is shown that periodic oscillations in rxx(1/B) occur in such lattices under the action of a current-induced Hall field due to Zener tunneling between Landau levels. Interference is found between Zener oscillations and commensurability oscillations of rxx in two-dimensional electron systems with one-dimensional periodic modulation. The experimental results are qualitatively explained by the role of Landau bands in nonlinear transport at large filling factors.  相似文献   

2.
For a 2D electron system in silicon, the temperature dependence of the Hall resistance ρxy(T) is measured in a weak magnetic field in the range of temperatures (1–35 K) and carrier concentrations n where the diagonal resistance component exhibits a metallic-type behavior. The temperature dependences ρxy(T) obtained for different n values are nonmonotonic and have a maximum at Tmax ~ 0.16TF. At lower temperatures T < Tmax, the change δρxy(T) in the Hall resistance noticeably exceeds the interaction quantum correction and qualitatively agrees with the semiclassical model, where only the broadening of the Fermi distribution is taken into account. At higher temperatures T > Tmax, the dependence ρxy(T) can be qualitatively explained by both the temperature dependence of the scattering time and the thermal activation of carriers from the band of localized states.  相似文献   

3.
The influence of a dc electric current I dc on the low-temperature magnetotransport of high-mobility electrons in a GaAs double quantum well with two occupied size-quantization levels has been studied. The oscillations of the resistance ρ xx , which are periodic in the inverse magnetic field, have been shown to appear in the quasitwo-dimensional system under consideration at a temperature of T = 4.2 K in magnetic fields B > 0.1 T; the oscillations are caused by isoenergetic resonance transitions of the electrons between the Landau levels of different subbands. The inversion of the oscillations with an increase in I dc has been discovered. It has been found that the observed effect is due to the electron transport in a nonlinear regime.  相似文献   

4.
A. A. Bykov 《JETP Letters》2008,88(6):394-397
Differential resistance r xx in a double GaAs quantum well with two occupied size-quantization subbands has been studied at a temperature of 4.2 K in magnetic fields B < 2 T. The oscillations of r xx with a period in the inverse magnetic field determined by the value of a dc bias current I dc have been discovered in the electron system under investigation at high filling factors in the presence of I dc. The amplitude of magneto-intersubband oscillations has been shown to increase in the r xx oscillation maxima, while the oscillation reversal has been observed in the minima. The discovered oscillations have been shown to be due to Zener tunneling of electrons between Landau levels tilted by a Hall electric field. The experimental data are qualitatively explained by the effect of intersubband transitions on the I dc-dependent component of the electron distribution function.  相似文献   

5.
Quantum oscillations of the Hall resistance ρij(B) of bismuth bicrystals are investigated in magnetic fields up to 35 T. It is found that the twist low-angle internal boundary possesses n-type conductivity and comprises a central part and two adjacent layers, which are characterized by the specific features of the Fermi surface of electrons.  相似文献   

6.
The nonlinear magnetotransport of a two-dimensional (2D) electron gas in one-dimensional lateral superlattices based on a selectively doped GaAs/AlAs heterostructure is studied. The one-dimensional potential modulation of the 2D electron gas is performed by means of a series of metallic strips formed on the surface of a heterostructure with the use of electron beam lithography and a lift-off process. The dependence of the differential resistance rxx on the magnetic field B < 1.5T in superlattices with the period a = 400 nm at a temperature of T = 4.2 K is investigated. It is found that electronic states with rxx ≈ 0 appear in one-dimensional lateral superlattices in crossed electric and magnetic fields. It is shown that states with rxx ≈ 0 in 2D electronic systems with one-dimensional periodic modulation arise at the minima of commensurability oscillations of the magnetoresistance.  相似文献   

7.
Dielectric strontium bismuth titanate ceramics SrTiO3: Bi is a complex solid solution consisting of the Sr1?uBi2u/3u/3TiO3 perovskite matrix and small planar inclusions related to Aurivillius-type layered ferroelectric compounds with a high Curie temperature TC (700–950 K). The matrix is characterized by a smeared ferroelectric phase transition in the temperature range 150–200 K and exhibits relaxation dielectric polarization. At temperatures below but close to the Curie temperature TC, the state of the ceramics can be treated as superparaelectric. The concentration dependence of the temperature corresponding to the maximum of the permittivity is explained.  相似文献   

8.
The average optical reflectivity of bismuth as a function of time t after irradiation by a short laser pulse has been calculated. The amplitude A of photoinduced oscillations in the average optical reflectivity is shown to have extrema under certain conditions. The time τj (j is a natural number) at which the amplitude A reaches the jth extremum has been calculated. The calculated dependences of the times τ1 and τ2 at which, respectively, the first and second extrema (the first minimum and the first maximum) of the amplitude A are reached on the maximum laser pulse energy density Q are consistent with the experimental data from [8].  相似文献   

9.
The energy of plasma oscillations of free charge carriers in bismuth crystals ?ωp can be qual to the band gap at the L point of the Brillouin zone E gL as a result of doping with an acceptor impurity. Variation in the edge shape and splitting of the minimum in the plasma reflection are observed in experimental studies of reflection under normal incidence of radiation on the crystal. An analysis of the totality of available experimental data shows that the above special features are caused by interaction of elementary excitations (such as the plasma oscillations) with band-to-band transitions. It became possible for the first time to ascertain the composition of the bismuth crystals for which the condition ?ωp=E gL is satisfied and observe the variation in the characteristics of the plasma oscillations of free charge carriers, which occurs as a result of electron-plasmon interaction.  相似文献   

10.
The magnetoresistance of granular La0.7Ca0.3MnO3 is studied experimentally over wide ranges of temperatures and magnetic fields. The emphasis is on anomalously large hysteresis of magnetoresistance at low temperatures (T = 4.2 K). The observed ρ(H) dependence can be qualitatively explained by spin-dependent tunneling of electrons through the dielectric boundaries of conducting granules characterized by a wide spread in the magnetic-moment magnitudes.  相似文献   

11.
The thermoelectric properties of n-Bi2 ? x Sb x Te3 ? y ? z Se y S z solid solutions are studied in the temperature range 300–550 K. It is shown that an increase in the parameter β determining the figure-of-merit Z of the material is observed in compositions with the optimally related effective mass of the density of states m/m 0, the carrier mobility μ0, and the lattice thermal conductivity κ L . Within the temperature range 300–350 K, the parameter β and the figure-of-merit Z are found to increase in solid solutions with substitutions in both bismuth telluride sublattices Bi → Sb and Te → Se, S (x = 0.16, y = z = 0.12) for optimum electron concentrations. An increase in the electron concentration and substitutions of atoms only in the tellurium sublattice bring about an increase in the β parameter and the value of Z at higher temperatures. Within the range 350–450 K, the parameters β and Z are observed to increase in a solid solution with a low content of substituted atoms in the tellurium sublattice Te → Se, S for y = z = 0.09 and, at higher temperatures up to 550 K, in compositions with tellurium substituted by selenium only, with increasing content of substituted atoms.  相似文献   

12.
Tm2O3 obeys between 80 and 980°K the Curie-Weiss lawχA (T+25=7,08) withμ eff=7.56 Bohr magnetons, the theoretical value for Tm3+(J=6,g=7/6). In the behavior of the metal,χΛ(T-14)=7.45 between 80 and 1540°K, a contribution of the non-localized electrons should be considered at high temperatures. The susceptibility of the metal is maximum at 53°K, minimum near 35°K, and the behavior is antiferromagnetic between these two temperatures, ferromagnetic below 35°K. An additional transition occurs near 10°K, vanishing by cooling in a magnetic field. The effect of this cryomagnetic treatment on the magnetization and the remanence has been measured in six different cooling fields. The magnetization reaches 1.0 and 5.0 magnetons in 26.7 and 110 kOe (pulsed field) respectively, whereas the saturation for the ground state3H6 isgJ=7.  相似文献   

13.
The obtained periodic magnetic-field dependences I c+(Φ/Φ0) and I c?(Φ/Φ0) of the critical current measured in opposite directions on asymmetric superconducting aluminum rings has made it possible to explain previously observed quantum oscillations of dc voltage as a result of alternating current rectification. It was found that a higher rectification efficiency of both single rings and ring systems is caused by hysteresis of the current-voltage characteristics. The asymmetry of current-voltage characteristics providing the rectification effect is due to the relative shifts of the magnetic dependences I c?(Φ/Φ0) = I c+(Φ/Φ0 + Δ?) of the critical current measured in opposite directions. This shift means that the position of I c+(Φ/Φ0) and I c?(Φ/Φ0) minima does not correspond to n + 0.5 magnetic flux Φ quanta, which is in direct contradiction to measured Little-Parks resistance oscillations. Despite this contradiction, the amplitude I c, an(Φ/Φ0) = I c+(Φ/Φ0) ? I c?(Φ/Φ0) of critical current anisotropy oscillations and its variations with temperature correspond to the expected amplitude of persistent current oscillations and its variations with temperature.  相似文献   

14.
We report similarities and differences of the transport features in the spin density wave (SDW) and in the field-induced SDW (FISDW) phases of the quasi-one-dimensional compound (TMTSF)2PF6. As temperature decreases below ≈2 K, the resistance in both phases exhibits a maximum and a subsequent strong drop. However, the characteristic temperature of the R(T) maximum and its scaling behavior in different magnetic fields B are evidence that the nonmonotonic R(T) dependences have different origin in SDW and FISDW regions of the phase diagram. We also found that the borderline T0(B, P) which divides the FISDW region of the P-B-T phase diagram into the hysteresis and nonhysteresis domains terminates in the N=1 subphase; the borderline thus has no extension to the SDW N=0 phase.  相似文献   

15.
The results of x-ray structural studies of the [N(C2H5)4]2CdBr4 crystal at low temperatures are presented. The unit cell parameters and the thermal expansion coefficients along the main crystallographic directions are measured at temperatures in the range from 90 to 320 K. The integrated intensities of the diffraction reflections are investigated as a function of the temperature. It is shown that the curves a = f(T), c = f(T), I 500 = f(T), and I 006 = f(T) at temperatures T 1 ≈ 174 K and T 2 ≈ 226 K exhibit anomalies in the form of abrupt changes in the lattice parameters and the diffraction reflection intensities. This indicates that the [N(C2H5)4]2CdBr4 crystal undergo phase transitions at these temperatures. Moreover, there is an anomaly in the form of a small maximum at the temperature T 3 = 293 K.  相似文献   

16.
The voltage-current characteristics (VCC) of Sm1?xSrx MnO3 samples with x=0.425 and x=0.450 were experimentally studied at a temperature of 77 K in pulsed and constant electric (E) and magnetic (H) fields up to 10 kOe for the HE and HE orientations. N-shaped VCCs and high-frequency (up to 3 MHz) current oscillations were observed. It was found that the effect of colossal magnetoresistance had a threshold character and was smoothly reduced to zero with E→0.  相似文献   

17.
Detailed measurements of the Seebeck coefficient S(T) in a broad range of temperatures (T = 2–300 K) have been performed for the first time for RB12 dodecaborides (R = Ho, Er, Tm, Lu) in paramagnetic (diamagnetic for LuB12) and antiferromagnetic states. At intermediate temperatures (10–300 K), the thermopower is determined by the interaction of carriers with phonon modes, which are related to the oscillations of rare-earth atoms in the framework of atomic clusters B12. A comparative analysis of the parameters determining photon drag the thermopower related to the phonon drag and the results of galvanomagnetic measurements shows evidence for a significant effect of spin fluctuations on the behavior of charge transport characteristics in RB12 compounds with strong electron correlations.  相似文献   

18.
The transition temperatureT c and the critical fieldH c of lead were measured as a function of the concentration of lattice defects. The defects were generated by plastic deformation at liquid Helium temperatures and reduced by annealing. T c is rather insensitive to defects. With increasing residual resistance ratio ρ the transition temperature increases and finally reaches a constant value with onlyΔT c ≈4.5 · 10?3 °K. On the other hand a deformation of the same amount increasesH c more than twice as much as the starting value. Annealing to room-temperature reducesρ, T c andH c to their initial values. During the annealing process,T c shows a distinct maximum and ρ a marked step. Contrary to this behaviourH c decreases linearly during the whole region of annealing. Taking into account the strong influence of ρ uponH c a picture is given about the mechanism of deformation, which allows to understand the results qualitatively. The changes ofT c produced by elastic strain were also measured. The results are in quantitative agreement with those of pressure experiments.  相似文献   

19.
A. A. Bykov 《JETP Letters》2009,89(11):575-578
The effect of millimeter microwave radiation on the electron transport of two-dimensional (2D) ballistic microbars formed on the basis of individual GaAs quantum wells at a temperature of T = 4.2 K in magnetic fields B < 0.6 T has been investigated. Differences have been revealed in the magnetic field dependences of the microwave photoresistance of a 2D electron gas in Hall bars with a length L and a width W for the cases L, W > l p and L, W < l p , where l p is the electron mean free path for momentum. The microwave photoresistance in macroscopic bars (L, W > l p ) is a periodic alternating function of the inverse magnetic field; in microbars (L, W < l p ), it is a periodic positive function of 1/B. The experimental results indicate that the mechanisms of the microwave photoresistance of a 2D electron gas are different for macroscopic and microscopic bars.  相似文献   

20.
The magnetization of the canted antiferromagnet CoCO3 (T N = 18.1 K) is calculated in the Weiss molecular field approximation taking into account the microscopic state of the Co2+ ion in the entire range of temperatures and magnetic fields. The values of T N, magnetic susceptibility in the basal plane, and ferromagnetic moment were used as parameters. It is shown that the anisotropy of the g factor and of the exchange interaction at low temperatures (T < 30 K) including the magnetic ordering temperature is correctly described in the Abragam-Pryce approximation. At high temperatures, the g factor increases and becomes isotropic, but it cannot be described using the Abragam-Pryce approximation. The reasons for g factor variation and the magnitude of the magnetic moment are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号