首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A radial cascaded composite ultrasonic transducer is analyzed.The transducer consists of three short metal tubes and two radially polarized piezoelectric ceramic short tubes arranged alternately along the radial direction.The short metal tubes and the piezoelectric ceramic short tubes are connected in parallel electrically and in series mechanically,which can multiply the input sound power and sound intensity.Based on the theory of plane stress,the electro-mechanical equivalent circuit of radial vibration of the transducer is derived firstly.The resonance/anti-resonance frequency equation and the expression of the effective electromechanical coupling coefficient are obtained.Excellent electromechanical characteristics are determined by changing the radial geometric dimensions.Two prototypes of the transducers are designed and manufactured to support the analytical theory.It is concluded that the theoretical resonance/anti-resonance frequencies are consistent with the numerical and experimental results.When R_2 is at certain values,both the anti-resonance frequency and effective electromechanical coupling coefficient corresponding to the second mode have maximal values.The radial cascaded composite ultrasonic transducer is expected to be used in the fields of ultrasonic water treatment and underwater acoustics.  相似文献   

2.
A unified approximation method is derived to illustrate the effect of electro-mechanical coupling on vibration-based energy harvesting systems caused by variations in damping ratio and excitation frequency of the mechanical subsystem. Vibrational energy harvesters are electro-mechanical systems that generate power from the ambient oscillations. Typically vibration-based energy harvesters employ a mechanical subsystem tuned to resonate with ambient oscillations. The piezoelectric or electromagnetic coupling mechanisms utilized in energy harvesters, transfers some energy from the mechanical subsystem and converts it to an electric energy. Recently the focus of energy harvesting community has shifted toward nonlinear energy harvesters that are less sensitive to the frequency of ambient vibrations. We consider the general class of hybrid energy harvesters that use both piezoelectric and electromagnetic energy harvesting mechanisms. Through using perturbation methods for low amplitude oscillations and numerical integration for large amplitude vibrations we establish a unified approximation method for linear, softly nonlinear, and bi-stable nonlinear energy harvesters. The method quantifies equivalent changes in damping and excitation frequency of the mechanical subsystem that resembles the backward coupling from energy harvesting. We investigate a novel nonlinear hybrid energy harvester as a case study of the proposed method. The approximation method is accurate, provides an intuitive explanation for backward coupling effects and in some cases reduces the computational efforts by an order of magnitude.  相似文献   

3.
ABSTRACT

This article investigates wave propagation behavior of a multi-phase nanocrystalline nanobeam subjected to a longitudinal magnetic field in the framework of nonlocal couple stress and surface elasticity theories. In this model, the essential measures to describe the real material structure of nanocrystalline nanobeams and the size effects were incorporated. This non-classical nanobeam model contains couple stress effect to capture grains micro-rotations. Moreover, the nonlocal elasticity theory is employed to study the nonlocal and long-range interactions between the particles. The present model can degenerate into the classical model if the nonlocal parameter, couple stress and surface effects are omitted. Hamilton’s principle is employed to derive the governing equations which are solved by applying an analytical method. The frequencies are compared with those of nonlocal and couple stress-based beams. It is showed that wave frequencies and phase velocities of a nanocrystalline nanobeam depend on the grain size, grain rotations, porosities, interface, magnetic field, surface effect and nonlocality.  相似文献   

4.
The booming development of nanotechnology motivates the widespread applications of piezoelectric nanomaterials (e.g. ZnO, ZnS, GaN) and their nanostructures (e.g. nanobelts, nanorings nanowires). It is noted that the coupled field analysis of nano-sized piezoelectric structure under non-uniform temperature in-service environment is of great importance for the fabrication and exploitation of nanoelectromechanical devices. In such situation, spatial size effect of heat conduction is necessary to be taken into account due to its important significance in characterizing the nonlocal feature of heat transport in nanosystems. In this study, thermal nonlocal effect is introduced into the thermo-electro-mechanical model based on nonlocal elasticity theory to further shed light on the size-dependent coupling behavior of thermal, electric, and elastic fields. The coupled field equations involving size-dependent parameters are derived. The solutions can be obtained using Laplace transformation methods. Parametric studies are conducted to evaluate the influences of thermal as well as elastic nonlocal parameters on the transient responses. The results indicate that the piezoelectric performance of the nanoplate is greatly improved in the presence of thermal nonlocal effect.  相似文献   

5.
This article deals with the wave propagation analysis of single/double layered functionally graded (FG) size-dependent nanobeams in elastic medium and subjected to a longitudinal magnetic field employing nonlocal elasticity theory. Material properties of nanobeam change gradually according to the sigmoid function. Applying an analytical solution, the acoustical and optical dispersion relations are explored for various wave number, nonlocality parameter, material composition, elastic foundation constants, and magnetic field intensity. It is found that frequency and phase velocity of waves propagating in S-FGM nanobeam are significantly affected by these parameters. Also, presence of cut-off and escape frequencies in wave propagation analysis of embedded S-FGM nanobeams is investigated.  相似文献   

6.
The paper addresses to the development of the bilateral asymptotic method of solution of contact problems taking into account electro-mechanical fields coupling. Approximated analytical solutions are provided for contact problems on indentation of an electroelastic piezoelectric half-space with inhomogeneous in depth piezoelectric coating by a rigid conductive circular flat, spherical or conical punch.  相似文献   

7.
This paper makes the first attempt to investigate the dispersion behavior of waves in magneto-electro-elastic (MEE) nanobeams. The Euler nanobeam model and Timoshenko nanobeam model are developed in the formulation based on the nonlocal theory. By using the Hamilton’s principle, we derive the governing equations which are then solved analytically to obtain the dispersion relations of MEE nanobeams. Results are presented to highlight the influences of the thermo-electro-magnetic loadings and nonlocal parameter on the wave propagation characteristics of MEE nanobeams. It is found that the thermo-electro-magnetic loadings can lead to the occurrence of the cut-off wave number below which the wave can’t propagate in MEE nanobeams.  相似文献   

8.
Lin S 《Ultrasonics》2007,46(1):51-59
A new type of radial composite piezoelectric transducer in radial vibration is developed and analyzed. The radial composite transducer consists of a piezoelectric ceramic thin ring polarized in the thickness direction and a metal thin circular ring. They are connected together and excited to vibrate in the radial direction. The radial vibrations of a piezoelectric ceramic thin ring and a metal thin circular ring are analyzed, respectively. Their radial electro-mechanical equivalent circuits are obtained. Based on the electro-mechanical equivalent circuits and using the boundary conditions between the piezoelectric ceramic thin ring and the metal thin circular ring in the radial direction, the electro-mechanical equivalent circuit of the radial composite piezoelectric transducer is derived out and the resonance frequency equation is obtained. The relationship between the resonance frequency and the geometrical dimensions of the transducer is analyzed. Some radial composite piezoelectric transducers are designed and manufactured. The resonance frequencies and the anti-resonance frequencies, the electro-mechanical equivalent circuit parameters are measured. The effective electro-mechanical coupling coefficient and the mechanical quality factor are calculated. It is illustrated that the measured radial resonance frequencies are in good agreement with the theoretical results from the resonance frequency equation.  相似文献   

9.
LCR分流电路下压电声子晶体智能材料的带隙   总被引:1,自引:0,他引:1       下载免费PDF全文
唐一璠  林书玉 《物理学报》2016,65(16):164202-164202
将带有LCR分流电路的压电陶瓷片对贴在铝和环氧树脂组成的声子晶体结构中.使智能材料的机械振动与压电陶瓷的压电效应耦合起来,推导出机械振动在压电陶瓷片上的等效附加应力;使LCR分流电路中的电磁振荡效应和声子晶体的能带特性有机结合,计算了在分流电路作用下智能材料扭转和弯曲振动的带隙特性,研究了电阻、电感、电容元件的改变对压电声子晶体智能材料带隙的影响.研究结果表明:在合理尺寸下,随着分流电路中电阻值的增大,带隙的频率范围变宽,但衰减幅值有所降低;电感和电容值的增大都可以使带隙向低频移动,带隙的衰减幅值随着电感值的增大而升高,但随着电容值的增大而降低.从而给压电声子晶体智能材料减震降噪的控制提供了一种新思路.  相似文献   

10.
胡吉英  李朝晖  孙阳  李启虎 《中国物理 B》2016,25(12):127701-127701
Shear-mode piezoelectric materials have been widely used to shunt the damping of vibrations where utilizing surface or interface shear stresses. The thick-shear mode(TSM) elastic constant and the mechanical loss factor can change correspondingly when piezoelectric materials are shunted to different electrical circuits. This phenomenon makes it possible to control the performance of a shear-mode piezoelectric damping system through designing the shunt circuit. However, due to the difficulties in directly measuring the TSM elastic constant and the mechanical loss factor of piezoelectric materials, the relationships between those parameters and the shunt circuits have rarely been investigated. In this paper, a coupling TSM electro–mechanical resonant system is proposed to indirectly measure the variations of the TSM elastic constant and the mechanical loss factor of piezoelectric materials. The main idea is to transform the variations of the TSM elastic constant and the mechanical loss factor into the changes of the easily observed resonant frequency and electrical quality factor of the coupling electro–mechanical resonator. Based on this model, the formular relationships are set up theoretically with Mason equivalent circuit method and they are validated with finite element(FE) analyses. Finally, a prototype of the coupling electro–mechanical resonator is fabricated with two shear-mode PZT5 A plates to investigate the TSM elastic constants and the mechanical loss factors of different circuit-shunted cases of the piezoelectric plate. Both the resonant frequency shifts and the bandwidth changes observed in experiments are in good consistence with the theoretical and FE analyses under the same shunt conditions. The proposed coupling resonator and the obtained relationships are validated with but not limited to PZT5 A.  相似文献   

11.
郭建丽  杨振军  李星亮  张书敏 《中国物理 B》2022,31(1):14203-014203
In the framework of nonlinear wave optics,we report the evolution process of a dipole breathing wave in lossy nonlocal nonlinear media based on the nonlocal nonlinear Schr?dinger equation.The analytical expression of the dipole breathing wave in such a nonlinear system is obtained by using the variational method.Taking advantage of the analytical expression,we analyze the influences of various physical parameters on the breathing wave propagation,including the propagation loss and the input power on the beam width,the beam intensity,and the wavefront curvature.Also,the corresponding analytical solutions are obtained.The validity of the analysis results is verified by numerical simulation.This study provides some new insights for investigating beam propagation in lossy nonlinear media.  相似文献   

12.
Nonlinear effects in the coupling of polarization with elastic strain have been predicted to occur in ferroelectric materials subjected to high electric fields. Such predictions are tested here for a PbZr0.2Ti0.8O3 ferroelectric thin film at electric fields in the range of several hundred MV/m and strains reaching up to 2.7%. The piezoelectric strain exceeds predictions based on constant piezoelectric coefficients at electric fields from approximately 200 to 400 MV/m, which is consistent with a nonlinear effect predicted to occur at corresponding piezoelectric distortions.  相似文献   

13.
14.
In this study we develop the exact second order formalism of piezoelectric structures under an external mechanical stress. Indeed, previous models are approximated since they consist in deriving all the equations in the natural coordinate system (corresponding to the pre-stress free case). Hence, our exact formalism proposes to obtain the whole of equations in the current coordinate system (which is the coordinate system after the pre-deformation). Then, this exact formalism is used to derive the modified Christoffel equations and the modified KLM model. Finally, we quantify the correction with the approximate formalism on several transfer functions and electro-mechanical parameters for a non hysteretic material (lithium niobate). In conclusion, we show that for this material, significant corrections are obtained when studying the plane wave velocities and the electrical input impedance (about 4%), whereas other parameters such as coupling coefficient and impulse response are less influenced by the choice of coordinate systems (corrections less than 0.5%).  相似文献   

15.
张辉  张淑仪  范理 《中国物理 B》2012,21(8):83302-083302
Flexural resonance vibrations of piezoelectric ceramic tubes in Besocke-style scanners with nanometer resolution are studied by using an electro-mechanical coupling Timoshenko beam model.Meanwhile,the effects of friction,the first moment,and moment of inertia induced by mass loads are considered.The predicted resonance frequencies of the ceramic tubes are sensitive to not only the mechanical parameters of the scanners,but also the friction acting on the attached shaking ball and corresponding bending moment on the tubes.The theoretical results are in excellent agreement with the related experimental measurements.This model and corresponding results are applicable for optimizing the structures and performances of the scanners.  相似文献   

16.
陈琼  薛春霞  王勋 《物理学报》2021,(3):183-190
利用有限变形理论,以无限长压电圆杆为研究对象,考虑了在横向惯性、等效泊松比效应以及在热电弹藕合共同作用下,基于Hamilton原理,并引入Euler方程推导出压电圆杆的纵向波动方程.采用Jacobi椭圆函数展开法,求解压电圆杆的波动方程和对应的解.最后,通过Matlab软件得到不同波速比下的色散曲线.以及温度场对压电圆杆的波形、波幅和波数的影响曲线.数值分析结果表明:随着温度的升高,波速逐渐降低,温度场的改变可影响和控制孤立波的传播特性.  相似文献   

17.
Photonic nanobeam microcavities are devices for applications where strong light–matter-interaction is needed. They are characterized by a strong field enhancement in a small volume, which can be used for nonlinear optical applications. To enhance such effects, a solid microcavity can be replaced by a slot, that can be infiltrated with a material of choice (e.g. chalcogenide glasses or nonlinear polymers). Here, the parameters needed to create high quality nanobeam slot microcavities are numerically investigated. Design rules for the minimization of scattering losses and thus the enhancement of the Q factor are reviewed and discussed.  相似文献   

18.
孙炜海  张超群  鞠桂玲  潘晶雯 《物理学报》2018,67(19):194303-194303
将具有力电磁耦合性能的夹层引入到压电/压磁声子晶体中,在保持单胞长度为固定值的情况下,分别改变磁电弹夹层的厚度、磁电弹夹层中压电材料的体积分数和磁电弹夹层中压电材料的种类;并利用传递矩阵法和Bloch定理,得到波数k与频率ω的色散关系;通过色散关系图分析不同的磁电弹夹层对压电/压磁声子晶体带隙特性的影响.研究发现:当磁电弹夹层厚度增加时,带隙的中心频率上升,带隙宽度变宽;当磁电弹夹层中压电材料体积分数增加时,带隙中心频率下降,第一带隙宽度变窄,第二带隙宽度增加,第三带隙宽度保持不变;当磁电弹夹层中的压电材料种类不同时,带隙的中心频率和带隙宽度有明显的改变;磁电弹夹层对压电/压磁声子晶体带隙中心频率的影响在高频区比低频区更显著.  相似文献   

19.
Yan ZZ  Zhang C 《Ultrasonics》2012,52(5):598-604
The localization properties of in-plane elastic waves propagating in two-dimensional porous phononic crystals with one-dimensional aperiodicity are initially analyzed by introducing the concept of the localization factor that is calculated by the plane-wave-based transfer-matrix method in this paper. The band structures characterized by using localization factors are calculated for different phononic crystals by altering matrix material properties and geometric structure parameters. Numerical results show that the effect of matrix material properties on wave localization can be ignored, while the effect of geometric structure parameters is obvious. For comparison, the periodic porous system and Fibonacci system with rigid inclusion are also analyzed. It is found that the band gaps are easily formed in aperiodic porous system, but hard for periodic porous system. Moreover, compared with aperiodic system with rigid inclusion, the wider low-frequency band gaps appear in the aperiodic porous system.  相似文献   

20.
The wave propagation in a periodic elastic-piezoelectric axial-bending coupled beam is investigated in this paper by considering the mechanical–electrical coupling behavior. The strain energy and kinetic energy of each sub-cell are first formulated to extract the dynamic stiffness matrices, and then the compatibility and continuity conditions at the interface between the adjacent cells are utilized to derive the transfer matrix that governs the propagation of the wave along the periodic piezoelectric beam. By employing the Lyapunov exponent method, the dynamic behaviors of the periodic beam structure are evaluated with different base beam materials, dimension ratios, piezoelectric constants and elastic stiffness. The results indicate that regardless of the length ratio, there exist certain frequency intervals, where the width and magnitude of the prominent stop band of the aluminum beam with periodic piezoelectric patches are always broader and larger than those of the steel base system. In addition, as the thickness ratio decreases, the location of the stop band tends to move toward a higher frequency. Numerical studies also demonstrate that different piezoelectric constants and elastic stiffness affect the characteristics of wave propagation in completely different fashions. The investigation in the present study provides basic guidelines to design periodic elastic-piezoelectric laminate structures in order to achieve desired filtering characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号