首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An investigation has been made on heavy ion‐acoustic (HIA) nonplanar shocks and solitons in an unmagnetized, collisionless, strongly coupled plasma whose constituents are strongly correlated adiabatic inertial heavy ions, weakly correlated nonextensive distributed electrons and Maxwellian light ions. By using appropriate nonlinear equations for our strongly coupled plasma system and the well‐known reductive perturbation technique, a modified Burgers (mB) equation and a modified Korteweg‐de Vries (mK‐dV) equation have been derived. They are also numerically solved in order to investigate the basic features (viz. polarity, amplitude, width, etc.) of cylindrical and spherical shock/solitary waves in such a strongly coupled plasma system. The roles of heavy ion dynamics, nonextensivity of electrons, and other plasma parameters arised in this investigation have significantly modified the basic features of the cylindrical and spherical HIA solitary and shock waves. The findings of our results obtained from this theoretical investigation may be useful in understanding the nonlinear phenomena associated with the cylindrical and spherical HIA waves both in space and laboratory plasmas. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Properties of nonplanar (viz. cylindrical and spherical) dust ion-acoustic (DIA) solitary and shock waves propagating in a dusty plasma containing charge fluctuating stationary dust, inertial warm ions, and non-isothermal electrons following a vortex-like distribution, are investigated by the reductive perturbation method. It has been shown that all the basic features of the DIA solitary and shock waves are significantly modified by the effects of vortex-like electron distribution, dust charge fluctuation, and nonplanar cylindrical and spherical geometries. The implications of our results in some space and laboratory dusty plasma environments are briefly discussed.  相似文献   

3.
Nonplanar (cylindrical and spherical) double layers (DLs) in a four-component dusty plasma (composed of inertial positively and negatively charged dust, Boltzmann electrons and ions) are studied by employing the reductive perturbation method. The modified Gardner equation describing the nonlinear propagation of the dust-acoustic (DA) waves is derived, and its nonplanar double layer solutions are numerically analyzed. The parametric regimes for the existence of the DLs, which are found to be associated with positive potential only, are obtained. The basic features of nonplanar DA DLs, which are found to be different from planar ones, are also identified. The implications of our results to different space and laboratory dusty plasma situations, where opposite polarity dust are observed, are discussed.  相似文献   

4.
Cylindrical and spherical dust-electron-acoustic(DEA) shock waves and double layers in an unmagnetized,collisionless,complex or dusty plasma system are carried out.The plasma system is assumed to be composed of inertial and viscous cold electron fluids,nonextensive distributed hot electrons,Maxwellian ions,and negatively charged stationary dust grains.The standard reductive perturbation technique is used to derive the nonlinear dynamical equations,that is,the nonplanar Burgers equation and the nonplanar further Burgers equation.They are also numerically analyzed to investigate the basic features of shock waves and double layers(DLs).It is observed that the roles of the viscous cold electron fluids,nonextensivity of hot electrons,and other plasma parameters in this investigation have significantly modified the basic features(such as,polarity,amplitude and width) of the nonplanar DEA shock waves and DLs.It is also observed that the strength of the shock is maximal for the spherical geometry,intermediate for cylindrical geometry,while it is minimal for the planar geometry.The findings of our results obtained from this theoretical investigation may be useful in understanding the nonlinear phenomena associated with the nonplanar DEA waves in both space and laboratory plasmas.  相似文献   

5.
The properties of nonplanar (cylindrical and spherical) dust-acoustic solitary waves (DASWs) in an unmagnetized, collisionless three-component dusty plasma, whose constituents are negatively charged cold dust fluid, superthermal/non-Maxwellian electrons (represented by kappa distribution) and Boltzmann distributed ions, are investigated by deriving the modified Gardner (MG) equation. The well-known reductive perturbation method is employed to derive the MG equation. The basic features of nonplanar DA Gardner solitons (GSs) are discussed. It is seen that the properties of nonplanar DAGSs (positive and negative) significantly differ as the value of spectral index κ changes.  相似文献   

6.
We have performed numerical analysis of the one-dimensional dynamics of the cylindrical/spherical dust ion acoustic shock waves in unmagnetized dusty plasma consisting of positive ions, immobile dust particles, and nonextensive distributed cold and hot electrons. A multiple-scale expansion method is used to derive Burgers Equation (BE) and modified Burgers equation (MBE) by including higher order nonlinearity. The basic characteristics of the shock waves have been analysed numerically and graphically for different physical parameters relevant to Saturn' E ring through 2D figures. The parametric dependence of dust ion acoustic shock waves on some plasma parameters nonextensive index, density, and temperature of cold and hot electrons, concentration of dust particles, thermal effects and kinematic viscosity of ions is explored. Furthermore, it is found that the nonplanar geometry effects have an important impact on the establishment of shock waves. The amplitude of the wave decreases faster as one departs away from the axis of the cylinder or centre of the sphere. Such decaying behaviour continues as time progresses. It is also found that an increasing dust concentration decreases the amplitude of the dust ion acoustic shock waves.  相似文献   

7.
The nonlinear propagation of planar and nonplanar (cylindrical and spherical) ion-acoustic waves in an unmagnetized electron–positron–ion–dust plasma with two-electron temperature distributions is investigated in the context of the nonextensive statistics. Using the reductive perturbation method, a modified nonlinear Schrödinger equation is derived for the potential wave amplitude. The effects of plasma parameters on the modulational instability of ion-acoustic waves are discussed in detail for planar as well as for cylindrical and spherical geometries. In addition, for the planar case, we analyze how the plasma parameters influence the nonlinear structures of the first- and second-order ion-acoustic rogue waves within the modulational instability region. The present results may be helpful in providing a good fit between the theoretical analysis and real applications in future spatial observations and laboratory plasma experiments.  相似文献   

8.
The nonlinear propagation of the dust-acoustic (DA) waves in a strongly coupled dusty plasma containing Maxwellian electrons, nonthermal ions, and positively charged dust is theoritically investigated by a Burgers equation. The effects of the polarization force (which arises due to the interaction between electrons and highly positively charged dust grains) and nonthermal ions are studied. DA shock waves are found to exist with positive potential only. It represents that the strong correlation among the charged dust grains is a source of dissipation, and is responsible for the formation of DA shock waves. The effects of polarization force and nonthermal ions significantly modified the basic features of DA shock waves in strongly coupled dusty plasma.  相似文献   

9.
The nonlinear propagation of cylindrical and spherical modified ion-acoustic (mIA) waves in an unmagnetized, collisionless, relativistic, degenerate multispecies plasma has been investigated theoretically. This plasma system is assumed to contain both relativistic degenerate electron and positron fluids, nonrelativistic degenerate positive and negative ions, and positively charged static heavy ions. The restoring force is provided by the degenerate pressures of the electrons and positrons, whereas the inertia is provided by the mass of positive and negative ions. The positively charged static heavy ions participate only in maintaining the quasi-neutrality condition at equilibrium. The nonplanar K-dV and mK-dV equations are derived by using reductive perturbation technique and numerically analyzed to identify the basic features (speed, amplitude, width, etc.) of mIA solitary structures. The basic characteristics of mIA solitary waves are found to be significantly modified by the effects of degenerate pressures of electron, positron, and ion fluids, their number densities, and various charge states of heavy ions. The implications of our results to dense plasmas in astrophysical compact objects (e.g., nonrotating white dwarfs, neutron stars, etc.) are briefly mentioned.  相似文献   

10.
Interaction of nonplanar ion-acoustic solitary waves is an important source of information for studying the nature and characteristics of ion-acoustic solitary waves (IASWs). The head-on collision between two cylindrical/spherical IASWs in un-magnetized plasmas comprising of nonthermal distributed electrons and warm ions is investigated using the extended version of Poincaré–Lighthill–Kuo (PLK) perturbation method. How the interactions are taking place in cylindrical and spherical geometries are shown numerically. Analytical phase shifts are derived for nonplanar geometry. The effects of the ion to electron temperature parameter and the nonthermal electrons parameter on the phase shift are studied. It is shown that the properties of the interaction of IASWs in different geometries are very different.  相似文献   

11.
Cylindrical and spherical (nonplanar) solitary waves (SWs) and double layers (DLs) in a multi-ion plasma system (containing inertial positively as well as negatively charged ions, non-inertial degenerate electrons, and negatively charged static dust) are studied by employing the standard reductive perturbation method. The modified Gardner (MG) equation describing the nonlinear propagation of the dust ion-acoustic (DIA) waves is derived, and its nonplanar SWs and DLs solutions are numerically analyzed. The parametric regimes for the existence of SWs, which are associated with both positive and negative potential, and DLs which are associated with negative potential, are obtained. The basic features of nonplanar DIA SWs, and DLs, which are found to be different from planar ones, are also identified.  相似文献   

12.
Cylindrical and spherical Gardner solitons (GSs) and double layers (DLs) in a two-electron-temperature plasma system (containing cold electrons, hot electrons obeying a Boltzmann distribution, and hot ions obeying a nonthermal distribution) are studied by employing the reductive perturbation method. The modified Gardner equation describing the nonlinear propagation of the electron-acoustic (EA) waves is derived, and its nonplanar GS and DL solutions are numerically analyzed. The parametric regimes for the existence of GSs, which are associated with both positive and negative potential, and DLs which are associated with positive potential, are obtained. The basic features of nonplanar EA GSs, and DLs, which are found to be different from planar ones, are also identified. The implications of our results in space and laboratory plasmas are briefly discussed.  相似文献   

13.
The nonlinear propagation of cylindrical and spherical dust-ion-acoustic (DIA) envelope solitary waves in unmagnetized dusty plasma consisting of dust particles with opposite polarity and non-extensive distribution of electron is investigated. By using the reductive perturbation method, the modified nonlinear Schrödinger (NLS) equation in cylindrical and spherical geometry is obtained. The modulational instability (MI) of DIA waves governed by the NLS equation is also presented. The effects of different ranges of the non-extensive parameter q on the MI are studied. The growth rate of the MI is also given for different values of q. It is found that the basic features of the DIA waves are significantly modified by non-extensive electron distribution, polarity of the net dust-charge number density and non-planar geometry.  相似文献   

14.
A theoretical investigation has been carried out to study the effect of strong electrostatic interaction on the dust acoustic shock structures in strongly coupled dusty plasma with dust charge fluctuations.The fluid approach is employed,in which the strong electrostatic interaction is modeled by effective electrostatic temperature.A Burger-like equation,the coefficients of which are significantly modified by effects of strong coupling and dust charge Ructuation,is derived.It is shown that the combined effects of dust charge Ructuation,the ion/electron temperature,the ion/electron population,and strong coupling effect modify the basic properties of the dust acoustic waves in such a strongly coupled dusty plasma.The results of this work are compared with those observed by some laboratory experiments.  相似文献   

15.
Electron-acoustic shock waves (EASWs) in an unmagnetized four-component plasma (containing hot electrons and positrons following the q-nonextensive distribution, cold mobile viscous electron fluid, and immobile positive ions) are studied in nonplanar (cylindrical and spherical) geometry. With the help of the reductive perturbation method, the modified Burgers equation is derived. Analytically, the effects of nonplanar geometry, nonextensivity, relative number density and temperature ratios, and cold electron kinematic viscosity on the basic properties (viz. amplitude, width, speed, etc.) of EASWs are discussed. It is examined that the EASWs in nonplanar geometry significantly differ from those in planar geometry. The results of this investigation can be helpful in understanding the nonlinear features of EASWs in various astrophysical plasmas.  相似文献   

16.
The basic properties of the nonlinear propagation of the nonplanar(cylindrical and spherical) positronacoustic(PA) shock waves(SHWs) in an unmagnetized electron-positron-ion(e-p-i) plasma containing immobile positive ions,mobile cold positrons,and superthermal(kappa distributed) hot positrons and electrons are investigated both analytically and numerically.The modified Burgers equation(mBE) is derived by using the reductive perturbation method.The basic features of PA SHWs are significantly modified by the cold positron kinematic viscosity(η),superthermal parameter of electrons(κ_e),superthermal parameter of hot positrons(κ_p),the ratio of the electron temperature to hot positron temperature(σ),the ratio of the electron number density to cold positron number density(μ_e),and the ratio of the hot positron number density to cold positron number density(μ_(ph)).This study could be useful to identify the basic properties of nonlinear electrostatic disturbances in dissipative space and laboratory plasmas.  相似文献   

17.
The basic properties of dust-ion-acoustic (DIA) shock waves in an unmagnetized dusty plasma (containing inertial ions, kappa distributed electrons with two distinct temperatures, and negatively charged immobile dust grains) are investi- gated both numerically and analytically. The hydrodynamic equation for inertial ions has been used to derive the Burgers equation. The effects of superthermal bi-kappa electrons and ion kinematic viscosity, which are found to modify the basic features of DIA shock waves significantly, are briefly discussed.  相似文献   

18.
S.S. Duha  A.A. Mamun 《Physics letters. A》2009,373(14):1287-1289
A dusty plasma system containing Boltzmann electrons, mobile ions and charge fluctuating stationary dust has been considered. The nonlinear propagation of the dust-ion-acoustic waves in such a dusty plasma has been investigated by employing the reductive perturbation method. It has been shown that the dust charge fluctuation is a source of dissipation and is responsible for the formation of the dust-ion-acoustic shock waves. The basic features of such dust-ion-acoustic shock waves have been identified. The implications of our results in space and laboratory dusty plasmas are discussed.  相似文献   

19.
研究了强耦合尘埃等离子体的尘埃声波的线性色散关系和尘埃声孤波的非线性传播。考虑一个包含电子、离子、正电扰动尘埃颗粒的完全电离的三成分模型等离子体。假定其电子、离子数密度服从玻尔兹曼分布,而大质量的尘埃成分用一组经典流体方程描述,对系统方程进行线性化,得到了尘埃声波的线性色散关系,发现离子的集中参数对色散关系的影响很大。用约化摄动法对系统方程进行展开,得到了描述小振幅孤波的伯格斯方程。基于伯格斯方程研究了尘埃声孤波的基本特性,发现尘埃颗粒的强耦合效应对尘埃声孤波有很大的修正作用。该研究结果有助于理解尘埃空间等离子体中局域波的一些特性。  相似文献   

20.
Ion-acoustic shock waves (IASWs) in a homogeneous unmagnetized plasma, comprising superthermal electrons, positrons, and singly charged adiabatically hot positive ions are investigated via two-dimensional nonplanar Kadomstev–Petviashvili–Burgers (KPB) equation. It is found that the profiles of the nonlinear shock structures depend on the superthermality of electrons. The influence of other plasma parameters such as, ion kinematic viscosity and ion temperature, is discussed in the presence of superthermal electrons in nonplanar geometry. It is also seen that the IASWs propagating in cylindrical/spherical geometry with transverse perturbation will be deformed as time goes on.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号