首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
已报道的大多数编码超表面仅利用相位或幅度编码进行电磁波调控,限制了太赫兹波调控灵活性.本文提出了一种反射超表面单元,通过相位编码构造超表面,在圆极化波入射下获得反射波束分裂和偏转功能,实现对圆极化波束的灵活调控;同一超表面单元结构利用幅度编码构造超表面在线极化太赫兹波入射下,实现空间成像功能.通过相位编码和幅度编码结合构造超表面,提高了对太赫兹波操控的灵活性,该编码超表面构造思路可以为太赫兹器件设计提供一种全新思路.  相似文献   

2.
《光子学报》2021,50(1)
为了实现太赫兹波束的自由操控,基于Pancharatnam-Berry几何相位理论,提出一种多层C型单元结构,实现在目标频率下0到2π的太赫兹波透射传输相位调控。基于广义斯涅耳定律,构建2-bit和3-bit编码超表面,在圆偏振入射条件下,实现透射型太赫兹波束的散射角度调控。采用数字信号处理理论中的傅里叶卷积运算,对不同周期序列的编码超表面进行四位制编码卷积运算,获得新的编码序列,实现对透射太赫兹波散射角度的自由调控。利用多层C型编码超表面单元结构对其进行旋转编码,实现1阶和2阶涡旋相位板,产生不同阶数太赫兹波涡旋光束。  相似文献   

3.
李绍和  李九生  孙建忠 《物理学报》2019,68(10):104203-104203
超表面是由亚波长单元组成控制电磁波的人工结构,研究发现通过对其进行编码排列可实现对电磁波能量的任意控制.本文利用四种形状相同、尺寸不同的人字形结构单元,结合其不同相位响应和不同的相位灵敏度设计了太赫兹频率编码器,通过进行特定编码,在频率改变的情况下,实现了对电磁波能量辐射调控.分别设计了1-bit, 2-bit周期和非周期太赫兹频率编码器,通过数值计算和仿真模拟验证了上述特性,而且该结构对太赫兹波辐射主瓣能量有很好的分散作用,可以有效减少雷达散射截面,雷达散射截面缩减在q=0,j=0方向上最大可达29 dB,在太赫兹波隐身中具有巨大应用价值.  相似文献   

4.
本文设计了一种编码相位梯度超表面,用于实现太赫兹频段的雷达散射截面(RCS)缩减。依据Pancharatnam-Berry(PB)几何相位原理在超表面单元中引入相位梯度,设计出1 bit编码的两个元素“0”和“1”,使得两者的反射相位差接近180°。通过遗传算法得到编码相位梯度超表面中编码元素的最佳排列,实现了太赫兹波宽带RCS缩减。对编码相位梯度超表面进行建模分析,结果表明,在0.87~1.725 THz的宽频段内,设计的1 bit编码相位梯度超表面能实现大于10 dB的RCS缩减,最大缩减值达到31.26 dB。此外,分析了x和y极化波的入射角度变化对编码相位梯度超表面性能的影响,在0°~30°范围内,其性能稳定。以上结果表明,该类超表面在雷达隐身等方面具有潜在的应用价值。  相似文献   

5.
提出了一种基于石墨烯带的太赫兹波段的1 bit编码超构材料,可以实现太赫兹波束的数目、频率、幅度等参数多功能动态调控.该结构由金属薄膜、聚酰亚胺、硅、二氧化硅、石墨烯带组成.通过对石墨烯带施加两种不同的电压,可以实现一定频率范围内相位差接近180?的"0"和"1"数字编码单元,进而构成1 bit动态可控的编码超构材料.全波仿真结果表明,不同序列的编码超构材料能够实现波束数目从单波束、双波束、多波束到宽波束的调控.相同序列的编码超构材料,通过施加石墨烯带的不同电压能够实现宽频段波束频率的偏移.对于000000或者111111周期序列的编码超构材料,通过施加石墨烯带的不同电压还能够实现波束幅度的调控.因此这种基于石墨烯带的编码超构材料为灵活调控太赫兹波提供了一种新的途径,将在雷达隐身、成像、宽带通信等方面具有重要的意义.  相似文献   

6.
电磁超表面由于其独特的电磁特性为调控电磁波提供了有力工具,合适地设计成编码、随机、相位不连续、完美吸收器等超表面,就能够控制电磁波的散射以及反射特性,实现雷达散射截面的缩减。本文综述了不同的电磁超表面利用漫反射或者吸收等特性实现在微波和太赫兹波段雷达散射截面缩减中的应用。分析表明,编码超表面由不同的数字单元组成,其反射相位差在很宽的频段范围内满足恒定的关系,设计特殊的单元序列使入射的电磁波产生非定向散射,更高bit编码超表面更容易灵活调控电磁波;随机超表面通过调节阵元的尺寸实现宽带移相从而将金属目标特征性强的反射峰打散成一个无规律、杂乱的波,产生漫反射;不连续超表面由于相位不连续可使电磁波发生漫反射或者异常反射;吸收器通过合理设计结构尺寸实现吸收电磁波能量来减小反射。因此电磁超表面在雷达隐身、宽带通讯、成像等方面具有重要的应用前景。最后对电磁超表面在雷达散射截面缩减中应用的发展趋势进行了初步探讨,未来将向着宽带、柔性、大角度等方面发展。  相似文献   

7.
提出了一种基于二氧化钒且工作频段可切换的太赫兹编码超表面.该编码超表面由金属-二氧化钒复合层、聚酰亚胺介质层、金属反射层构成,主要通过对顶层双裂环谐振器和十字结构的参数进行设计,获得其所需的性能;而二氧化钒材料的引入,巧妙地使其可工作于双频点,进而实现不同功能的切换.仿真结果表明:当二氧化钒处于绝缘态时,在f1=0.34 THz的圆极化波垂直入射下,设计的编码超表面可以视为3-bit Pancharatnam-Berry相位编码超表面,通过对单元中双裂环谐振器设计卷积编码序列,使该编码超表面具有以特定角度出射拓扑荷数l=±1涡旋波束的功能;当二氧化钒处于金属态时,在f2=0.74 THz的正交线极化波垂直入射下,设计的编码超表面可以视为2-bit各向异性编码超表面,通过对单元中十字结构分别设计随机编码序列和棋盘格编码序列,使该编码超表面具有雷达散射截面缩减和波束分束的功能.其可为太赫兹电磁超材料多功能器件的设计提供一定的参考.  相似文献   

8.
为实现高效太赫兹调控,迫切需要一种高效且成本低的材料。新型钙钛矿材料由于其优异的光电特性,加上钙钛矿制备工艺简单、可大批量生产等优点,非常适合作为太赫兹超材料的活性材料,通过外部激励改变活性材料的属性,可灵活调控太赫兹波。因此,选择新型钙钛矿材料外加光场调控太赫兹,分析在光场作用前(绝缘态)和在光场作用后(金属态)两种状态对单元结构太赫兹宽波段下幅值和相位的影响。设计出光场灵活调控的钙钛矿基1 bit太赫兹编码超表面结构,该结构由有机无机杂化钙钛CH3NH3PbI3(MAPbI3)、聚酰亚胺和铝构成。通过CST仿真结果显示,该超表面结构在光场的调控下能够实现宽谱(0.1、1、2、6 THz)太赫兹波的180°相位差变化,经过超表面编码结构的设计,同一编码序列实现远场波束的变换。研究结果表明,基于光场操控钙钛矿材料的编码超表面为实现灵活的太赫兹波调控提供了新的思路,在太赫兹通信、安检、生物医学成像等方面具有巨大的应用潜力。  相似文献   

9.
设计了一种3层结构的太赫兹编码超表面,其顶部是嵌入VO2的金属十字架结构,中间是聚酰亚胺,底部为纯金属.利用该编码超表面的各向异性特点,可以实现对正交极化波(x极化波和y极化波)的独立调控;通过在编码超表面中引入VO2材料,改变其相变状态,可进一步增加调控的灵活性.对设计的超表面进行建模仿真和分析,结果表明:对于垂直入射的1 THz正交极化波, VO2处于绝缘态时,设计的超表面可视为2 bit的各向异性编码超表面,产生模式为1和2的涡旋波; VO2处于金属态时,设计的超表面可视为1 bit的各向异性编码超表面,产生对称的2束反射波和4束反射波.所提出的各向异性和相变材料结合的方法,实现了同一超表面上产生多种不同形式太赫兹波束的功能,一定程度上解决了超表面调控太赫兹波形式单一的问题,为实现能够灵活应用于多种场景的多功能编码超表面提供了参考.  相似文献   

10.
龙洁  李九生 《物理学报》2021,(7):112-119
利用相变材料嵌入超表面组成复合结构实现太赫兹移相器,该器件自上而下依次为二氧化钒嵌入金属层、液晶、二氧化钒嵌入金属层、二氧化硅层.通过二氧化钒的相变特性和液晶的双折率特性同时作用实现对器件相位调控.随着外加温度变化二氧化钒电导率发生改变,器件的相位随之产生移动,同样的对液晶层施加不同的电压导致液晶折射率发生变化,器件相位也会有影响.经过这两种介质共同作用,最终实现对太赫兹波相位有效调控.仿真结果验证了该相移器在频率f=0.736 THz时,太赫兹移相器的最大相移量达到355.37°,在0.731—0.752 THz(带宽为22 GHz)频率范围相移量超过350°.这种基于相变材料与超表面复合结构为灵活调控太赫兹波提供了一种新思路,将在太赫兹成像、通信等领域有着广泛的应用前景.  相似文献   

11.
Polarization is an important characteristic of electromagnetic (EM) waves, and efficient manipulations over EM wave polarizations are always desirable in practical applications. Here, we review the recent efforts in controlling light polarizations with metamaterials, at frequencies ranged from microwave to visible. We first presented a 4 × 4 version transfer matrix method (TMM) to study the scatterings by an anisotropic metamaterial of EM waves with arbitrary propagating directions and polarizations. With the 4 × 4 TMM, we discovered several amazing polarization manipulation phenomena based on the reflection geometry and proposed corresponding model metamaterial systems to realize such effects. Metamaterial samples were fabricated with the help of finite-difference-time-domain (FDTD) simulations, and experiments were performed to successfully realize these ideas at both microwave and visible frequencies. Efforts in employing metamaterials to manipulate light polarizations based on the transmission geometry are also reviewed.  相似文献   

12.
太赫兹人工电磁媒质研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
鲍迪  沈晓鹏  崔铁军 《物理学报》2015,64(22):228701-228701
近年来, 随着太赫兹科学技术的发展, 越来越多的科学家向太赫兹间隙这一传统空白领域发起挑战. 其中, 人工电磁媒质因为能够设计太赫兹波段中紧缺的功能器件而受到广泛关注. 近年来, 对人工电磁媒质尤其是太赫兹方面的研究进展突飞猛进. 人工电磁媒质的性质不仅仅由其构成材料决定, 更与其结构单元的形状和空间排布密切相关. 本文介绍了人工电磁媒质在太赫兹波段的发展、原理、设计和应用, 并着重介绍完美吸波器和人工表面等离激元, 为太赫兹波段功能器件的研究提供了参考, 并对可能的发展方向予以展望.  相似文献   

13.
太赫兹(THz)波,是指频率范围在0.1~10 THz的电磁波,在电磁波谱中处于红外与微波之间。太赫兹波的光子能量相对于可见光更低,1 THz对应的能量大约只有4.14 meV,意味着这将大大减少对生物体内组织器官的辐射而引起的伤害,不会对生物分子产生电离。因此,该波段在基础科学、人体安检、危险品检测、高速通信和医学成像等领域具有重要的潜在应用价值。但在医药和生物探测的应用中,通常需要检测微量的分析物,这就需要更高的灵敏度和检测的准确度。但是现存的检测方法受到太赫兹波强度检测可靠性不高的影响。基于超材料的生物传感可以通过增强局域电磁谐振,实现亚波长分辨,大大提高了传感器的分辨率与灵敏度,引起了人们的广泛关注。超材料是一种人工设计的周期性结构,通过合理设计可以增强局域电磁谐振响应,实现亚波长分辨,大大提高传感器的分辨率与灵敏度。太赫兹超材料传感器为生物传感领域提供了一种新的检测方法,具有灵敏度高、响应速度快、无标记检测等优点。随着微纳加工技术的快速发展,制作超材料太赫兹传感器的成本不断降低,从而在生物医学领域具有非常大的潜在应用价值。基于超材料的太赫兹传感器的研究已成为目前一个非常热门的国际前沿方向。但是关于太赫兹超材料传感器的最新研究进展未见报道,为此通过大量搜集并整理相关资料,综述了太赫兹超材料传感器在各种生物探测场景中的最新应用,分别从医学诊断、食品安全、农药检测等方面展开介绍。最后,对太赫兹超材料在生物传感器的发展和应用前景进行了总结和展望。该研究将为人们充分掌握太赫兹超材料生物传感器的最新应用进展提供重要参考,同时为太赫兹超材料传感器的发展和应用提供方向性的指导。  相似文献   

14.
In this paper we present an overview of research in our group in terahertz (THz) metamaterials and their applications. We have developed a series of planar metamaterials operating at THz frequencies, all of which exhibit a strong resonant response. By incorporating natural materials, e.g., semiconductors, as the substrates or as critical regions of metamaterial elements, we are able to effectively control the metamaterial resonance by the application of external stimuli, e.g., photoexcitation and electrical bias. Such actively controllable metamaterials provide novel functionalities for solid-state device applications with unprecedented performance, such as THz spectroscopy, imaging, and many others.  相似文献   

15.
16.
基于圆台结构的超宽带极化不敏感太赫兹吸收器   总被引:1,自引:0,他引:1       下载免费PDF全文
莫漫漫  文岐业  陈智  杨青慧  李胜  荆玉兰  张怀武 《物理学报》2013,62(23):237801-237801
本文提出一种基于圆台形吸收单元的超宽带、极化不敏感的超材料太赫兹吸收器. 该超材料吸收器采用金属薄膜金和介质层二氧化硅交替叠加的多层结构. 采用商业软件CST Studio Suite 2009时域求解器计算了其在0–10 THz波段内的吸收率Aω),在2–10 THz之间实现了对入射太赫兹波的超宽频带强吸收. 仿真结果表明,由于其圆台形单元结构,在器件垂直方向上形成一系列不同尺寸的微型吸收器,产生了吸收频点相连的多频吸收峰. 利用不同吸收峰的耦合叠加效应,获得超过8 THz的超宽带太赫兹波吸收,吸收强度达到92.3%以上. 这一结构具有超宽带强吸收,360°极化不敏感以及易于加工等优越特性,因而在太赫兹波探测器、光谱成像以及隐身技术方面具有潜在的应用. 关键词: 太赫兹波 超材料吸收器 圆台结构 超宽带  相似文献   

17.
In this paper, we study a three-resonant metamaterial with the combination of dual-resonant and single-resonant metamaterials. We present a new method to design multi-resonant metamaterial, which has a smaller dimension than general symmetric and asymmetric multi-resonant metamaterials. Theoretical and experimental results show that the structure has three distinct absorption frequencies centering around 0.29 THz, 0.46 THz, and 0.92 THz, and that each of them corresponds to a different resonant mode. Due to the good separation of the different resonances, this design provides a unique and effective method to construct multiband terahertz devices.  相似文献   

18.
王越  冷雁冰  王丽  董连和  刘顺瑞  王君  孙艳军 《物理学报》2018,67(9):97801-097801
基于石墨烯的电控特性提出了一种由金属线谐振器和"H"型谐振器组成的宽带可调的类电磁诱导透明(类EIT)超材料结构.首先,利用CST Microwave Studio软件对该超材料结构的透射特性进行了仿真.该结构在1.05—1.46 THz内的透射窗由金属线谐振器的等离子谐振和"H"型谐振器的电感-电容谐振干涉相消引起,且暗模式谐振器的数量增多导致了透射窗带宽的增加.其次,仿真模拟了该结构在不同石墨烯费米能级下的透射特性.当石墨烯费米能级由0 eV逐渐增加到1.5 eV时,该结构透射窗在1.05—1.46 THz内的平均透射振幅由87%逐渐减少到25%,实现了宽带可调.同时,通过仿真模拟该结构在1.26 THz下的电场分布对其透射机理进行了分析,并实验制备了类EIT超材料结构样品,且利用太赫兹时域光谱对样品进行了透射性能测试,测试结果与仿真分析的趋势基本一致.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号