首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
A potential dosimeter based on aqueous frozen solutions and solid-state salt are presented for the evaluation of the energy transferred during the interaction of high-energy radiation with matter at low temperature. The foundation of these dosimeters, both the solid state and the frozen solutions, is based on the measurement of the change of the iron oxidation state. The systems were irradiated with gamma radiation at different doses (up to 10 MGy), and at different temperatures (from 77 to 298 K). The irradiated samples were analysed by UV-spectroscopy and Mössbauer spectroscopy. A theoretical model was developed for the chemical reactions system. This model reproduces the experimental effects produced by the irradiation in aqueous solutions of ferrous salt. The results showed that the response of the dosimeters depends on the irradiation temperature. At low-radiation doses, the response was linear. In particular, this work can be applied to low-temperature dosimetry can be specially applied to simulation experiments of extraterrestrial bodies, as well as in general to space research.  相似文献   

2.
3.
The recent work of Grøn [1] concerning charged analogues of Florides' class of solutions is discussed and generalized. The properties of this kind of model are investigated. In particular it is shown that the ratiom/r as well as the acceleration of gravity are maximum inside the body rather than at the boundary. Some exact solutions of the Einstein-Maxwell equations illustrating these properties are presented. The solutions are matched continuously to the exterior Schwarzschild solution and they represent electromagnetic mass models of neutral systems. All physical quantities are finite inside the distributions. The energy density is positive and decreases monotonically from its maximum value at the center to zero at the boundary.  相似文献   

4.
The gravitational radiation of isolated systems is studied by introducing a class of reference systems that is the analog of the class of inertial systems in flat space. Expressions for the total energy of these systems and the flux of gravitational radiation are obtained. The fundamental role of the Bondi-Metzner-Sachs asymptotic symmetry groups in the general theory of relativity is explained; transformations of the group characterize transitions from one reference system of a given class to another.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 11, pp. 47–54, November, 1973.  相似文献   

5.
In this paper, we examine some basic properties of the multiple-sine-Gordon (MSG) systems, which constitute a generalization of the celebrated sine-Gordon (SG) system. We start by showing how MSG systems can be viewed as a general class of periodic functions. Next, periodic and step-like solutions of these systems are discussed in some details. In particular, we study the static properties of such systems by considering slope and phase diagrams. We also use concepts like energy density and pressure to characterize and distinguish such solutions. We interpret these solutions as an interacting many body system, in which kinks and antikinks behave as extended particles. Finally, we provide a linear stability analysis of periodic solutions which indicates short wavelength solutions to be stable.  相似文献   

6.
A class of radiative solutions of Einstein's field equations with a negative cosmological constant and a pure radiation is investigated. The space-times, which generalize the Defrise solution, represent exact gravitational waves which interact with null matter and propagate in the anti–de Sitter universe. Interestingly, these solutions have homogeneous and non-singular wave-fronts for all freely moving observers. We also study properties of sandwich and impulsive waves which can be constructed in this class of space-times.  相似文献   

7.
For the exactly solved reduced BCS model an electrostatic analogy exists; in particular it served to obtain the exact thermodynamic limit of the model from the Richardson Bethe ansatz equations. We present an electrostatic analogy for a wider class of integrable Hamiltonians with pairing force interactions. We apply it to obtain the exact thermodynamic limit of this class of models. To verify the analytical results, we compare them with numerical solutions of the Bethe ansatz equations for finite systems at half-filling for the ground state.  相似文献   

8.
M Lakshmanan  R Radha 《Pramana》1997,48(1):163-188
We briefly review the recent progress in obtaining (2+1) dimensional integrable generalizations of soliton equations in (1+1) dimensions. Then, we develop an algorithmic procedure to obtain interesting classes of solutions to these systems. In particular using a Painlevé singularity structure analysis approach, we investigate their integrability properties and obtain their appropriate Hirota bilinearized forms. We identify line solitons and from which we introduce the concept of ghost solitons, which are patently boundary effects characteristic of these (2+1) dimensional integrable systems. Generalizing these solutions, we obtain exponentially localized solutions, namely the dromions which are driven by the boundaries. We also point out the interesting possibility that while the physical field itself may not be localized, either the potential or composite fields may get localized. Finally, the possibility of generating an even wider class of localized solutions is hinted by using curved solitons.  相似文献   

9.
We study numerically the Riemann problem for a 2 x 2 system of conservation laws with a cubic flux function, a particular case of the class of models introduced by Keyfitz and Kranzer. The system is not strictly hyperbolic, and the classical Lax theory for hyperbolic systems is not directly applicable. Correspondingly, some numerical schemes which are accurate for strictly hyperbolic systems are not well behaved for this example. When they do work, different schemes yield markedly different results for certain data. We explain this effect by observing that, near these data, viscous regularization is non-uniform as the viscosity tends to zero. This fact does not contradict the well-posedness of the hyperbolic model; it does imply that precise control of the viscosity introduced into a computational method is crucial for generating the correct numerical solutions. We examine all of these issues and comment on their implications for similar systems which arise in continuum mechanics.  相似文献   

10.
11.
12.
Lie systems in Quantum Mechanics are studied from a geometric point of view. In particular, we develop methods to obtain time evolution operators of time-dependent Schrödinger equations of Lie type and we show how these methods explain certain ad hoc methods used in previous papers in order to obtain exact solutions. Finally, several instances of time-dependent quadratic Hamiltonian are solved.  相似文献   

13.
L K Patel  Lakshmi S Desai 《Pramana》1997,48(3):819-824
Spherically symmetric non-static higher dimensional metrics are considered in connection with Einstein’s field equations. Two exact solutions are derived. One of them corresponds to a mixture of perfect fluid and pure radiation field and represents higher dimensional Vaidya metric in the cosmological background of Einstein static universe. The other corresponds to a pure radiation field and represents higher dimensional Vaidya metric in the background de Sitter universe. For both of these solutions, the cosmological constant is taken to be non-zero. Many known solutions are derived as particular cases.  相似文献   

14.
An extension of the algebraic-geometric method for nonlinear integrable PDE's is shown to lead to new piecewise smooth weak solutions of a class of N-component systems of nonlinear evolution equations. This class includes, among others, equations from the Dym and shallow water equation hierarchies. The main goal of the paper is to give explicit theta-functional expressions for piecewise smooth weak solutions of these nonlinear PDE's, which are associated to nonlinear subvarieties of hyperelliptic Jacobians. The main results of the present paper are twofold. First, we exhibit some of the special features of integrable PDE's that admit piecewise smooth weak solutions, which make them different from equations whose solutions are globally meromorphic, such as the KdV equation. Second, we blend the techniques of algebraic geometry and weak solutions of PDE's to gain further insight into, and explicit formulas for, piecewise-smooth finite-gap solutions. The basic technique used to achieve these aims is rather different from earlier papers dealing with peaked solutions. First, profiles of the finite-gap piecewise smooth solutions are linked to certain finite dimensional billiard dynamical systems and ellipsoidal billiards. Second, after reducing the solution of certain finite dimensional Hamiltonian systems on Riemann surfaces to the solution of a nonstandard Jacobi inversion problem, this is resolved by introducing new parametrizations. Amongst other natural consequences of the algebraic-geometric approach, we find finite dimensional integrable Hamiltonian dynamical systems describing the motion of peaks in the finite-gap as well as the limiting (soliton) cases, and solve them exactly. The dynamics of the peaks is also obtained by using Jacobi inversion problems. Finally, we relate our method to the shock wave approach for weak solutions of wave equations by determining jump conditions at the peak location. Received: 16 February 1999 / Accepted: 10 April 2001  相似文献   

15.
Properties of the solutions of the coupled equations describing the flow of average mode power in optical waveguides are investigated. All of the important properties and their theoretical foundations are first reviewed for systems with arbitrary coupling and loss coefficients. It is then shown that, for the special class of systems with nearest-neighbour coupling, the solutions are expressible in terms of orthogonal polynomials. In particular, for systems obeying a quasi-uniform loss model and having coupling coefficients with simple dependence on mode number (uniform or linear), the solutions are associated with the classical polynomials. As illustrations of this analysis, the characteristics of optical power flow in three such systems are studied in detail. These include a slab-waveguide with uniform coupling, the corresponding cylindrical waveguide with uniform coupling, and a parabolic-index fibre with linear coupling dependence.  相似文献   

16.
Symmetric hyperbolic systems of equations are explicitly constructed for a general class of tensor fields by considering their structure as r-fold forms. The hyperbolizations depend on 2r−1 arbitrary timelike vectors. The importance of the so-called “superenergy” tensors, which provide the necessary symmetric positive matrices, is emphasized and made explicit. Thereby, a unified treatment of many physical systems is achieved, as well as of the sometimes called “higher order” systems. The characteristics of these symmetric hyperbolic systems are always physical, and directly related to the null directions of the superenergy tensor, which are in particular principal null directions of the tensor field solutions. Generic energy estimates and inequalities are presented too. Examples are included, in particular a mixed gravitational-scalar field system at the level of the Bianchi equations.  相似文献   

17.
The dynamics of photoisomerization of a model molecule during its transformation of ultrashort (with a duration much shorter than the lifetime of the resonant excited electronic state) light pulses is simulated numerically. The two-level electronic subsystem of the molecule is described using the quantum theory, while the nuclear subsystem (taking into account the two isomeric states of the molecule) and the radiation field are described using the classical theory. The ranges of the carrier frequency, the peak intensity, and the durations of nπ sinusoidal pulses (n = 1–10) irradiation with which results in the photoisomerization of molecules of the type under study (for example, cyanine dyes) are determined from the analysis of solutions to self-consistent equations that describe the motion of the “isomerization oscillator” and the time evolution of the population amplitude of the resonant electronic state of the molecule. Each of these non-overlapping ranges corresponds to a particular value of n. Bifurcation values of the above parameters of the light pulse are boundaries of these ranges.  相似文献   

18.
We devote this work to investigate the solutions of a generalized diffusion equation which contains spatial fractional derivatives and nonlinear terms. The presence of external forces and absorbent terms is also considered. The solutions found here can have a compact or long tail behavior and, in particular, for the last case in the asymptotic limit, we relate these solutions to the Lévy or Tsallis distributions. In addition, from the results presented here a rich class of diffusive processes, including normal and anomalous ones, can be obtained.  相似文献   

19.
Relativistic generalization of the Landau criterion is obtained which, in contrast to the classical Tamm-Frank and Ginzburg theories, determines the primary energy mechanism of emission of nonbremsstrahlung Cherenkov radiation. It is shown that Cherenkov radiation may correspond to a threshold energetically favorable conversion of the condensate (ultimately long-wavelength) elementary Bose perturbations of a medium into transverse Cherenkov photons emitted by the medium proper during its interaction with a sufficiently fast charged particle. The threshold conditions of emission are determined for a medium with an arbitrary refractive index n, including the case of isotropic plasma with n<1 for which the classical theory of Cherenkov radiation prohibits such direct and effective nonbremsstrahlung emission of these particular transverse high-frequency electromagnetic waves. It is established that these conditions of emission agree with the data of well-known experiments on the threshold for observation of Cherenkov radiation, whereas the classical theory only corresponds to the conditions of observation of the interference maximum of this radiation. The possibility of direct effective emission of nonbremsstrahlung Cherenkov radiation, not taken into account in the classical theory, is considered for many observed astrophysical phenomena (type III solar radio bursts, particle acceleration by radiation, etc.).  相似文献   

20.
A model is developed for the hemispherical transmittance of direct and scattered solar radiation from a cloudless atmosphere by a mist layer of water droplets in order to investigate the potential of water misting systems to serve as a protection from solar irradiation with particular emphasis on harmful UV radiation. The proposed model is based on published spectral experimental data for solar irradiation, Mie theory for interaction of the radiation with single spherical droplets, and radiative transfer theory. Known limiting solutions are employed to simplify the Mie calculations. The modified two-flux approximation is used to account for both direct and diffuse irradiation in lieu of a numerical solution for the full radiative transfer equation in anisotropically scattering media. The role of the governing parameters of a disperse water curtain of water droplets, water content, and droplet size for sample conditions is studied in some detail, particularly in the near-ultraviolet part of the spectrum where radiation can result in human tissue damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号