首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
采用分子动力学模拟方法模拟了在周期性边界条件下由500个原子构成的液态Mg模型系统的凝固过程,分别考察了在5×10^14 K/s、5×10^13 K/s、1×10^13 K/s 、1×10^12 K/s的冷却速率下液态Mg熔体的凝固行为。模拟结果很好地重现了实验值。模拟中原子间作用势采用FS势,结构分析采用径向分布函数、均方位移、系统总能量分析、H-A键对分析技术等方法。结果表明,当冷却速率为5×10^14 K/s时,系统形成以1541键对为主的非晶态结构;当冷却速率分别为5×10^13 K/s、1×10^13 K/s、1×10^12 K/s时,系统形成以1421、1422键对为主的hcp晶态结构;另外,在快速冷却形成非晶的过程中,大部分bcc结构被保留下来,而在慢冷形成晶态的过程中,大部分bcc结构最终演化形成了hcp结构。  相似文献   

2.
冷却速度对Ga凝固过程的影响的模拟研究   总被引:4,自引:1,他引:3  
采用分子动力学方法对Ga在相同初始状态下以不同速度冷却的凝固过程中进行了模拟研究。发现:以3.38×1013、3.38×1012K/s的速度冷却,得到非晶态结构;以2.01×1011K/s的速度冷却,发生明显晶化,结晶转变温度约为133K。这一结果,对于如何正确选择冷却速度获得优良材料性能,将具有重要的实际意义。  相似文献   

3.
液态金属Ni3Al凝固过程中结构转变的分子动力学模拟   总被引:2,自引:0,他引:2  
采用分子动力学模拟方法对液态Ni3Al凝固过程进行了研究,考察了不同冷却速度下液态Ni3Al结构变化特点,原子间相互作用势采用F-S多体势,结构分析采用键取向序和对分析技术,计算结果表明,冷却速度对液态Ni3Al结构转变有重要影响,给出了不同冷却速度下液态Ni3Al结构转变的微观信息。  相似文献   

4.
利用计算机模拟了在周期性边界条件下由500个银原子构成的液态Ag模型系统以8×1013K/s的速率快速凝固的全过程.模拟在FS相互作用势的基础上,通过双体分布函数、键对分析技术等多种方法,对液Ag快冷凝固过程的微观结构转变特性作了分析,给出了连续快速冷凝过程中液Ag原子间依靠相互作用力形成的独特的微观结构图像.模拟结果表明在快速冷却过程中液Ag没有形成bcc结构的倾向.  相似文献   

5.
用Quantum Sutton-Chen多体势对Ag6Cu4和CuNi液态金属凝固过程进行了分子动力学模拟研究.在冷却速率2×1012到2×1014K/s范围内,CuNi总是形成fcc晶体结构,而Ag6Cu4总是形成非晶态结构.考虑到CuNi及AgCu中原子半径之比分别为1.025和1.13,那么模拟结果证实了原子的尺寸差别是非晶态合金形成的一个主要影响因素.此外采用键对及原子多面体类型指数法对凝固过程中微观结构组态变化的分析,不但能说明二十面体结构在非晶态合金形成和稳定性中所起的关键作用,又有助于对液态金属的凝固过程、非晶态结构特征的深入理解.  相似文献   

6.
采用分子动力学方法和Quantum Sutton-Chen(Q-SC)多体势对由5万个液态金属铜(Cu)原子构成的系统在三个不同冷却速率下的凝固过程中微观团簇结构转变的影响进行了模拟研究.运用双体分布函数、Honeycutt-Andersen(HA)键型指数法、原子团类型指数法(CTIM-2)和可视化分析等方法,对凝固过程中微观团簇结构的演变特性进行了分析研究.结果发现:由非晶体向晶体转变的临界速度约为1.0×1013K/s,在此冷速下系统形成非晶体和晶体以一定比例并存的混合结构;在冷速为1.0×1014K/s冷却时系统形成以1551、1541、1532、1431键型为主的非晶体结构,非晶转化温度约为673K;在以4.0×1012K/s速度冷却时,系统从673K就开始结晶,并形成以1421和1422二种键型或由这二种键型构成的面心立方(FCC)(12 0 0 0 12 0)和六角立方(HCP)(12 0 0 0 6 6)基本原子团为主的晶体结构,尤其是由1421键型构成的面心立方(12 0 0 0 12 0)基本原子团在晶体生长和微观团簇结构形成过程中占主导地位. 同时发现,冷速对金属Cu系统中的FCC结构和HCP结构的相对比例有显著的影响,冷速越低,FCC基本原子团以及由其构成的团簇结构越多。  相似文献   

7.
采用分子动力学方法和Quantum Sutton-Chen(QS-C)多体势,对液态金属铜(Cu)凝固过程中的晶体生长规律及纳米团簇微观结构转变特性进行了模拟跟踪研究.运用Honeycutt-Andersen(HA)键型指数法和新的原子团类型指数法(CTIM-2)分析了金属Cu原子的成键类型和原子团簇结构演变特性.结果发现:当以1.0×1013K/s速率凝固时,系统最终形成晶体和非晶体混合共存结构;在以4.0×1012K/s速度冷却时,系统从673K就开始结晶,并形成以1421和1422二种键型为主的晶体结构;面心立方(FCC)和六角密集(HCP)结构在形成晶体铜时起着非常重要的作用,尤其是由1421键型构成的面心立方(12 0 0 0 12 0)基本原子团在晶体生长和纳米团簇结构形成过程中占主导地位.  相似文献   

8.
采用分子动力学方法和Quantum Sutton-Chen(QS-C)多体势,对液态金属铜(Cu)凝固过程中的晶体生长规律及纳米团簇微观结构转变特性进行了模拟跟踪研究.运用Honeycutt-Andersen(HA)键型指数法和新的原子团类型指数法(CTIM-2)分析了金属Cu原子的成键类型和原子团簇结构演变特性.结果发现:当以1.0×1013K/s速率凝固时,系统最终形成晶体和非晶体混合共存结构;在以4.0×1012K/s速度冷却时,系统从673K就开始结晶,并形成以1421和1422二种键型为主的晶体结构;面心立方(FCC)和六角密集(HCP)结构在形成晶体铜时起着非常重要的作用,尤其是由1421键型构成的面心立方(12 0 0 0 12 0)基本原子团在晶体生长和纳米团簇结构形成过程中占主导地位.  相似文献   

9.
用分子动学模拟方法对液态Au3Cu冷却过程进行了研究,考察了不同冷却速度下Au3Cu结构变化特点,原子间相互作用势采用F-S多体势,结构分析采用键取向序和对分析技术。计算结果表明,冷却速度对液态Au3Cu能量及结构转变有重要影响,给出了不同冷却速度下液态Au3Cu结构转变的微观信息。  相似文献   

10.
采用分子动力学方法对液态金属Ga凝固过程中不同冷却速率对微观结构演变的影响进行了模拟跟踪研究. 运用HA键型指数法和原子成团类型指数法(CTIM)分析了金属原子Ga的成键类型和形成的基本原子团结构. 结果发现,冷却速率对凝固过程中的微观结构起着非常重要的作用. 在以1.0×1014,1.0×1013,1.0×1012K/s的速率冷却时,系统形成以与1311,1301键型相关的菱面体结构为主,夹杂着立方体、六角密集等其他团簇结构所构成的非晶态结构;在以1.0×1011K/s的速率冷却时,系统明显发生结晶,其结晶转变温度Tc约为198K,且冷却速率越慢,结晶转变温度Tc越高,形成以与1421键型相关的斜方晶体(经可视化分析确认)为主要构型的晶态结构. 这将为研究液态金属的结晶转变过程提供一种新方法. 关键词: 液态金属Ga 凝固过程 微结构转变 分子动力学模拟  相似文献   

11.
通过分子动力学对液态Cu10Ag90合金在四种冷速条件下进行快速凝固模拟。结果显示,1 × 1010和1 × 1011 K/s下系统的平均原子能量分别在750 K和650 K发生突变,冷速越低最终平均原子能量越低;1 × 1012和1 × 1013 K/s的双体分布函数第二峰出现分裂,表明结构处于非晶态。从1 × 1011K/s开始出现尖锐小峰,表明此冷速开始出现晶化现象,1 × 1010 K/s下分裂的峰更加尖锐明显,说明体系形成结晶度较高的晶体结构;1 × 1010 和1 × 1011 K/s下系统凝固后晶体结构含量由高到低分别为fcc, hcp, bcc。冷速越低晶体结构数目越多,系统的有序度更高,结构熵越低。  相似文献   

12.
采用F S多体势对液态合金Al3Ni和Ni3Al在不同冷却速度下的微观结构及其转变机制进行了分子动力学模拟 ,得到了不同冷速下各温度的双体分布函数 ;采用HA键型指数法对其结构进行了分析 ,结果表明 :Al3Ni在两种冷速下均以非晶的形式出现 ,只是慢冷时体系的有序度略有升高 ;而Ni3Al的结构及能量转变受冷速影响较大 ,快冷时形成非晶 ,而慢冷时出现明显结晶 ;同样冷速下Al含量较少的Ni3Al体系的有序度高 ,更易形成晶体 ,晶体的形成过程中有能量突变 .  相似文献   

13.
采用分子动力学模拟的方法研究了Cu50Ni50合金在不同冷却速度下的凝固过程,利用均方位移、径向分布函数和结构可视化等方法分析其微观结构.并对凝固模型进行拉伸模拟,通过应力应变曲线和直观结构变化分析其性能.研究表明:冷却速度对Cu50Ni50合金凝固形成的结构有较大影响,随着冷却速度的升高,凝固形成的结构中晶体含量减少,在较低的冷却速度下,如冷却1×1012K/s时,Cu50Ni50合金凝固形成晶体结构;在较高的冷却速度下,如1×1014K/s时,Cu50Ni50合金凝固形成非晶体结构,且非晶Cu50Ni50合金的抗拉性能要优于晶体Cu50Ni50合金.  相似文献   

14.
采用Quantum Sutton-Chen(Q-SC)多体势对液态金属Cu在四个不同冷却速率下的凝固过程进行了分子动力学模拟研究. 通过双体分布函数、键型指数、配位数、均方位移及可视化分析, 结果表明:冷却速率对液态金属Cu的微观结构演变有决定性影响. 当冷却速率为1.0×1014K/s时得到非晶态结构;当冷速分别为1.0×1013K/s,1.0×1012K/s和1.3×1011K/s时,系统形成以1421键型为主体的面心立方(fcc)与六角密集(hcp)共存的混合晶体结构;且其结晶温度分别为373K,773K和873K,即冷速越慢,其结晶温度越高,结晶程度也越高;且冷速越慢,1421键型越多,混合晶体中面心立方(fcc)结构所占的比例越高. 同时发现,原子的平均配位数的变化与1551,1441,1661键型的变化密切相关, 反映出体系对称性结构的变化规律与配位数的变化有关. 在可视化分析中,进一步采用中心原子法展现出非晶态与晶体结构的2D截面,及在3D下混合晶体中两个基本原子团分别为面心立方(fcc)与六角密集(hcp)基本原子团的具体结构. 关键词: Q-SC多体势 液态金属Cu 凝固过程 分子动力学模拟  相似文献   

15.
采用分子动力学方法对液态金属Na在四种不同冷速下的快速凝固过程进行了模拟跟踪研究.采用双体分布函数g(r)曲线、Honeycutt-Andersen键型指数法和原子团类型指数法对凝固过程中微观结构的变化进行了分析.结果表明:冷却速率对微结构的转变有决定性影响,当冷速为1.0×1014和1.0×1013K/s时,系统形成以1551和1541键型或以缺陷多面体基本原子团(13 1 10 2)和二十面体基本原子团(12 0 12 0)为主体的非晶态结构;当冷速为1.0×1012和1.0×1011K/s时,系统则形成以1441和1661键型或以体心立方基本原子团(14 6 0 8)为主体的晶态结构.同时发现:不同冷速对液态金属Na在液态和过冷态时微观结构的影响甚小;但不同冷速对其固态(非晶态利晶态)时的微观结构有显著的影响,且要在液-固转变点(分别在玻璃转变温度Tg和晶化起始温度Tc)附近或以后才能充分展现出来.根据这一特点,有可能建立另一种确定液态金属Tg和Tc的新方法.原子团类型指数法比键型指数法更有利于研究液态、非晶态等无序体系和一些晶化体系的具体结构特征. 关键词: 液态金属Na 凝固过程 分子动力学模拟 原子团类型指数法  相似文献   

16.
电子通量对ZnO/K2SiO3热控涂层光学性能的影响   总被引:4,自引:2,他引:2       下载免费PDF全文
 研究了电子通量对ZnO/K2SiO3热控涂层光学性能的影响。分别采用通量为5×1011/cm2·s,8×1011/cm2·s,1×1012/cm2·s 和5×1012/cm2·s的电子对试样进行辐照。电子辐照下涂层的光学性能发生了退化,并且发现了退化涂层在空气中的“漂白”现象。分析了ZnO/K2SiO3热控涂层光学性能的退化机制,同时讨论了电子通量对太阳光谱吸收系数的影响。实验结果发现,在5×1011~1×1012/cm2·s的电子通量范围内,电子通量对ZnO/K2SiO3热控涂层光学性能的影响相同。因此在这个电子通量范围内,采用加速地面试验来模拟空间的电子辐照效应是有效的。  相似文献   

17.
边文花  代富平*  王伟丽  赵宇龙 《物理学报》2013,62(4):48102-048102
采用单辊急冷技术实现了NiAl-Mo三元两相共晶合金的快速凝固, 同时与常规条件下的凝固组织进行了对比研究. 实验发现, 单辊急冷的合金条带与常规条件的凝固样品均由B2结构的NiAl金属间化合物和bcc结构的Mo固溶体两相组成, 两相均具有(110)晶面优先生长的趋势, 并呈现出(110)NiAl//(110)Mo取向关系. 常规条件下得到的微观结构主要由规则的两相共晶组织组成, 形成了类似菊花状的共晶胞. 而单辊急冷条件下形成的组织结构主要是由近辊面的柱状晶区和近自由面的等轴晶区组成的凝固组织. 理论计算发现, 合金熔体的单辊辊速由10 m/s增大至50 m/s后, 其冷却速率从1.01×107 K/s逐渐增大到2.46×107 K/s, 冷却速率明显高于常规铸造过程, 因而形成了差别很大的凝固组织. 随着辊速(冷却速率)的增加, 合金条带的厚度从54.4 μm减小至22 μm, 近辊面柱状晶区的厚度所占比例也逐渐增大, 晶粒发生了明显细化. 关键词: 快速凝固 三元共晶 共晶转变 冷却速率  相似文献   

18.
微重力条件下Ni-Cu合金的快速枝晶生长研究   总被引:8,自引:1,他引:7       下载免费PDF全文
采用落管方法实现了Ni-50%Cu过冷熔体在微重力和无容器条件下的快速枝晶生长.对微重力条件下的晶体形核和快速生长进行了研究,发现随着过冷度的增大,晶体生长形态由粗大枝晶向规划均匀的等轴晶转变.实验中最大冷却速率达到8×103K/s,获得了218K(014TL)的最大过冷度.理论分析表明,过冷熔体中优先发生异质形核,形核率可达1012m-3s-1以上;Ni-50%Cu过冷熔体中的枝晶生长随过冷度的增大发生由溶质扩散控制向热扩散控制的生长动力学机理转变.在68K过冷度条件下,生长界面前沿的偏析程序最大. 关键词: 落管 微重力 深过冷 枝晶 熔体  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号