首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
Multi-walled carbon nanotubes (MWCNTs) are grown by arc discharge method in a controlled methane environment. The arc discharge is produced between two graphite electrodes at the ambient pressures of 100 tort, 300 torr, and 500 torr. Arc plasma parameters such as temperature and density are estimated to investigate the influences of the ambient pressure and the contributions of the ambient pressure to the growth and the structure of the nanotubes. The plasma temperature and density are observed to increase with the increase in the methane ambient pressure. The samples of MWCNT synthesized at different ambient pressures are analyzed using transmission electron microscopy, scanning electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. An increase in the growth of MWCNT and a decrease in the inner tube diameter are observed with the increase in the methane ambient pressure.  相似文献   

2.
The theory for a two-stream free electron laser (FEL) consisting of a relativistic electron beam transported along the axis of a planar wiggler in the presence of an axial guiding magnetic field is proposed and investigated. The electron trajectories and the small signal gain are derived. The characteristic of the linear gain and the normalized maximum gain are studied numerically. The result shows that the normalized maximum gain is considerably enhanced in comparison with that of the single stream. The effect of the difference between the energies of the two beams in this configuration of FEL is also considered, and we find that the gain is affected by the energy differences between groups 1 and 2.  相似文献   

3.
The electron flux distributions in the photdetachment of a negative hydrogen molecular ion in an electric field have been studied by using the two-center model and the dosed orbit theory. An analytic formula is presented for the electron flux of H2 in the presence of an electric field. The results show that the interference between the two orbits passing through the given spatial point leads to the oscillation in the electron flux distribution. Besides, the interference between the two centers of the H2^- is also very important. The comparison between the electron flux of H2^- in electric field with the result of H^- shows that at the equilibrium distance of two centers in the H2^-, the interference of the two nuclei on the detached electron's flux distribution is very strong, while at larger distance of the two centers, the interference effect of the two centers is decreased.  相似文献   

4.
杨超  吴小兵  刘大刚 《中国物理 C》2012,36(10):1013-1018
For optimization and accurate prediction of the amount of proton production in the multi-cusp ion source, analysis of the electron energy distribution function (EEDF) is necessary. A three dimensional particle-in-cell with Monte Carlo collision (PIC-MCC) code based on the CHIPIC software platform are developed. The code is applied to the multi-cusp proton source. The results show that there are two energy distributions in the discharge chamber, and a spatial non-uniformity of electron density due to the B×▽B drift of the top permanent magnets is observed.  相似文献   

5.
The interval and the radius of a pair of defect dielectric rods in waveguide channels near the branching region of a T-shaped waveguide branches are simultaneously varied, and their effects on the transmission properties are investigated using the finite-difference time-domain (FDTD) method. Numerical results show that there is an optimized region where the relative bandwidth of high-transmission (total transmittance 0.95) band of the branches is larger than 17%, which is higher than that of the existing same structures (11.60%) with fixed interval. These results provide for engineering application of simple T-shaped waveguide branches with high transmission.  相似文献   

6.
We propose and demonstrate a passively mode-locked fiber laser operating at 1951.8 nm using a commercial thulium-doped fiber(TDF) laser, a homemade double-clad thulium–ytterbium co-doped fiber(TYDF)as the gain media, and a multi-walled carbon nanotube(MWCNT) based saturable absorber(SA). We prepare the MWCNT composite by mixing a homogeneous solution of MWCNTs with a diluted polyvinyl alcohol(PVA) polymer solution and then drying it at room temperature to form a film. The film is placed between two fiber connectors as a SA before it is integrated into a laser ring cavity. The cavity consists of a 2 m long TDF pumped by a 800 nm laser diode and a 15 m long homemade TYDF pumped by a 905 nm multimode laser diode. A stable mode-locking pulse with a repetition rate of 34.6 MHz and a pulse width of 10.79 ps is obtained when the 905 nm multimode pump power reaches 1.8–2.2 W, while the single-mode 800 nm pump power is fixed at 141.5 m W at all times. To the best of our knowledge, this is the first reported mode-locked fiber laser using a MWCNT-based SA.  相似文献   

7.
A three-dimensional(3D)BurgersJ equation adopting perturbative methodology is derived to study the evolution of a shock wave with Landau quantized magnetic field in relativistic quantum plasma.The characteristics of a shock wave in such a plasma under the influence of magnetic quantization,relativistic parameter and degenerate electron density are studied with assistance of steady state solution.The magnetic field has a noteworthy control,especially on the shock wave's amplitude in the lower range of the electron density,whereas the amplitude in the higher range of the electron density reduces remarkably.The rate of increase of shock wave potential is much higher(lower)with a magnetic Held in the lower(higher)range of electron density.With the relativistic factor,the shock wave's amplitude increases significantly and the rate of increase is higher(lower)for lower(higher)electron density.The combined effect of the increase of relativistic factor and the magnetic field on the strength of the shock wave,results in the highest value of the wave potential in the lower range of the degenerate electron density.  相似文献   

8.
朱世秋  E.I.RAU 《中国物理快报》2002,19(9):1329-1332
We present a novel contactless and nondestructive method called the surface electron beam induced voltage (SEBIV) method for characterizing semiconductor materials and devices.The SEBIV method is based on the detection of the surface potential induced by electron beams of scanning electron microscopy (SEM).The core part of the SEBIV detection set-up is a circular metal detector placed above the sample surface.The capacitance between the circular detector and whole surface of the sample is estimated to be about 0.64pf.It is large enough for the detection of the induced surface potential.The irradiation mode of electron beam (e-beam) influences the signal generation When the e-beam irradiates on the surface of semiconductors continuously,a differential signal is obtained.The real distribution of surface potentials can be obtained when a pulsed e-beam with a fixed frequency is used for irradiation and a lock-in amplifier is employed for detection.The polarity of induced potential depends on the structure of potential barriers and surface states of samples.The contrast of SEBIV images in SEM changes with irradiation time and e-beam intensity.  相似文献   

9.
The fluctuation of the electron temperature has been measured by using the electron cyclotron emission imaging in the Hefei Tokamak-7(HT-7) plasma.The electron temperature fluctuation with a broadband spectrum shows that it propagates in the electron diamagnetic drift direction,and the mean poloidal wave-number kθ is calculated to be about 1.58 cm-1,or kθρs≈ 0.34.It indicates that the fluctuation should come from the electron drift wave turbulence.The linear global scaling of the electron temperature fluctuation with the gradient of electron temperature is consistent with the mixing length scale qualitatively.Evolution of spectrum of the fluctuation during the sawtooth oscillation phases is investigated,and the fluctuation is found to increase with the gradient of electron temperature increasing during most phases of the sawtooth oscillation.The results indicate that the electron temperature gradient is probably the driver of the fluctuation enhancement.The steady heat flux driven by electron temperature fluctuation is estimated and compared with the results from power balance estimation.  相似文献   

10.
This paper investigates the third-order nonlinear optical properties of two azo-nickel chelate compounds by the optical Kerr gate method at 830 nm wavelength with pulse duration of 120 fs. Both of the two compounds exhibited large third-order optical nonlinearity. The second-order hyperpolarizability,γ, of Compound 1 is of 1.0 × 10^-31 esu. Due to the charge transfer, the γ of Compound 2 with electron donor and acceptor group is 4.9 × 10^-31 esu, which is a four-time enhancement in comparison with Compound i. The absorption spectra show that the electron push-pull effect, which induces intramolecular charge transfer, leads to the increased optical nonlinearity.  相似文献   

11.
High-density polyethylene (HDPE) composites reinforced with multiwalled carbon nanotubes (MWCNTs) and nano-silicon dioxide (SiO2) fillers were evaluated for flame retardancy and thermal properties for cable and wire applications. In this study, the filler percentages of MWCNT and nano-SiO2 have varied from 0 to 5 wt% in HDPE composite with polyethylene-grafted glycidyl methacrylate compatibilizer and 3-aminopropyl triethoxy silane coupling agent. Addition of MWCNT’s and nano-SiO2 to the HDPE composite is observed to enhance the limiting oxygen index and char formation. Cone calorimeter results also show a 53% reduction in the peak heat release rate of the HDPE composite with 5 wt% of MWCNT. The existence of synergism between the uniformly dispersed MWCNT and nano-SiO2 has been verified using Finite Element Method (FEM)-based thermal simulations.  相似文献   

12.
Multiwalled carbon nanotube (MWCNT) loaded transparent conducting oxide materials (TCOMs) based optically transparent antennas are designed to resonate at 750 GHz. TCOMs such as indium-doped tin oxide (ITO) and titanium-doped tin oxide (TIO) are used for designing the transparent terahertz patch antennas. Shorting pin technique is used to improve the impedance performances of the transparent antennas. The MWCNT is used for shorting the microstrip line with the ground plane of the antenna. By varying the position of short with respect to the antenna patch, the resonant frequency of the antennas are optimized to resonate at 750 GHz. The impedance and radiation performances of the MWCNT loaded transparent antennas are compared. A broad impedance bandwidth (−10 dB) is achieved for both the proposed antennas. The MWCNT shorting pin effect on radiation performances of the transparent antennas are discussed in detail. The antennas are simulated using finite element method (FEM) based electromagnetic solver, Ansys-HFSS.  相似文献   

13.
Multiwalled carbon nanotubes (MWCNTs) were homogeneously dispersed in pure acrylic emulsion by ultrasonication to prepare MWCNT/polyacrylate composites applied on building interior wall for electromagnetic interference (EMI) shielding applications. The structure and surface morphology of the MWCNTs and MWCNT/polyacrylate composites were studied by field emission scanning microscopy (FESEM) and transmission electron microscopy (TEM). The electrical conductivity at room temperature and EMI shielding effectiveness (SE) of the composite films on concrete substrate with different MWCNT loadings were investigated and the measurement of EMI SE was carried out in two different frequency ranges of 100-1000 MHz (radio frequency range) and 8.2-12.4 GHz (X-band). The experimental results show that a low mass concentration of MWCNTs could achieve a high conductivity and the EMI SE of the MWCNT/polyacrylate composite films has a strong dependence on MWCNTs content in both two frequency ranges. The SE is higher in X-band than that in radio frequency range. For the composite films with 10 wt.% MWCNTs, the EMI SE of experiment agrees well with that of theoretical prediction in far field.  相似文献   

14.
Grafting of fluoropolymer onto multi-walled carbon nanotube (MWCNTs) powder by CF4 plasma treatment was investigated in this study. In order to achieve a uniform treatment of powder, a rotating barrel was designed and fixed between the two discharge electrodes. The influence of various plasma parameters, such as power and treatment time, on the fluorination of MWCNT surface was systematically analyzed by X-ray photoelectron spectroscopy (XPS), Fourier transformed infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The results revealed that a successful fluorination of MWCNT powder with a maximum of fluorine content of 12% could be achieved by using our plasma equipment. Our work provides a new way for the homogeneous fluorination of MWCNT powder and is valuable for industrial production. PACS 52.50.Dg; 52.40.Mj; 52.59. Ye; 52.77.-j  相似文献   

15.
Mass production of some kinds of carbon nanotubes (CNT) is now imminent, but little is known about the risk associated with their exposure. It is important to assess the propensity of the CNT to release particles into air for its risk assessment. In this study, we conducted aerosolization of a multi-walled CNT (MWCNT) to assess several aerosol measuring instruments. A Palas RBG-1000 aerosol generator applied mechanical stress to the MWCNT by a rotating brush at feed rates ranging from 2 to 20 mm/h, which the MWCNT was fed to a two-component fluidized bed. The fluidized bed aerosol generator was used to disperse the MWCNT aerosol once more. We monitored the generated MWCNT aerosol concentrations based on number, area, and mass using a condensation particle counter and nanoparticle surface area monitor. Also we quantified carbon mass in MWCNT aerosol samples by a carbon monitor. The shape of aerosolized MWCNT fibers was observed by a scanning electron microscope (SEM). The MWCNT was well dispersed by our system. We found isolated MWCNT fibers in the aerosols by SEM and the count median lengths of MWCNT fibers were 4–6 μm. The MWCNT was quantified by the carbon monitor with a modified condition based on the NIOSH analytical manual. The MWCNT aerosol concentration (EC mass base) was 4 mg/m3 at 2 mm/h in this study.  相似文献   

16.
Visible-light responsive monoclinic BiVO4/MWCNT nanocomposites were facilely prepared via an in situ hydrothermal method by using sodium dodecyl sulfonate (SDS) as a guiding surfactant. The as-prepared BiVO4/MWCNT nanocomposites were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman spectroscopy, field emission scanning electron microscopy (FE-SEM), the Fourier transform infrared spectroscopy (FTIR) and UV–vis diffuse reflectance spectroscopy. The results showed that the hydrothermal temperature and adding SDS had significant influence on the morphology and size of BiVO4. The photocatalytic activities of BiVO4/MWCNT nanocomposites were investigated by degrading methylene blue (MB) under visible-light irradiation. Remarkable enhancement in photodecomposition of MB was observed with BiVO4/MWCNT composite compared with bare BiVO4 particles. This improvement of photocatalytic was attributed to the effective charge transfer from BiVO4 nanocrystals to MWCNT, which promoted the migration efficiency of photogenerated electron–hole. Furthermore, a possible mechanism for the photocatalytic oxidative degradation was also discussed.  相似文献   

17.
通过原位吸附-受限生长聚合法成功制备了聚苯胺/碳纳米管(PANI/MWCNT)复合体.红外光谱和拉曼光谱证实了在碳纳米管(MWCNT)表面的包覆层为聚苯胺(PANI).紫外—可见吸收光谱表明随着MWCNT含量的增加PANI的吸收发生红移且强度提高.扫描电子显微镜和透射电子显微镜观察发现,PANI/MWCNT复合体直径为40—70nm,其中PANI的包覆层厚度约为15—20nm.利用四波混频方法测试它们的三阶非线性光学系数,结果发现PANI/MWCNT复合体的三阶非线性光学系数比纯PANI大,这说明在MWC 关键词: 碳纳米管 聚苯胺 复合体 三阶非线性光学系数  相似文献   

18.
Experimental confirmation for the stronger interaction of Ni with multi-walled carbon nanotubes (MWCNTs) compared to Cu with MWCNTs is presented. The interfaces between Cu (Ni) nanoparticles side-on oriented onto MWCNTs are analyzed with high spatial resolution electron energy-loss spectroscopy (EELS) of the carbon K-edge. The EEL spectra reveal a rehybridization from sp2 to sp3 hybridized carbon of the outermost MWCNT layer at the Ni interface, but no such rehybridization can be observed at the Cu interface. The EELS results are supported by transmission electron microscopy (TEM) images, which show a better wetting behavior of Ni and a smaller gap at the Ni–MWCNT interface, as compared to the corresponding Cu interfaces. The different behavior of Cu and Ni can be explained in terms of differing valence d-orbital occupancy. For the successful experimental demonstration of this effect the use of a soft chemical metal deposition technique is crucial.  相似文献   

19.
The branched crystal morphology of linear polyethylene formed at various temperatures from thin films has been studied by atomic-force microscopy (AFM), transmission electron microscopy (TEM), electron diffraction (ED) pattern and polymer decoration technique. Two types of branched patterns, i.e. dendrite and seaweed patterns, have been visualized. The fractal dimension d f = 1.65 of both dendrite and some of seaweed patterns was obtained by using the box-counting method, although most of the seaweed patterns are compact. Selected-area ED patterns indicate that the fold stems tilt about 34.5° around the b-axis and polymer decoration patterns show that the chain folding direction and regularity in two (200) regions are quite different from each other. Because of chain tilting, branched crystals show three striking features: 1) the lamella-like branches show two (200) regions with different thickness; 2) the crystals usually bend towards the thin region; 3) the thick region grows faster by developing branches, thus branches usually occur outside the thick region. The branched patterns show a characteristic width w, which gives a linear relationship with the crystallization temperature on a semilogarithmic plot. Received 15 March 2002 and Received in final form 29 April 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号