首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrical conductivity of ZrO2 doped with Pb3O4 has been measured at different temperatures for different molar ratios (x=0, 0.01, 0.02, 0.03, 0.04, 0.05 and 0.06). The conductivity increases due to migration of vacancies, created by doping. The conductivity increases with increase in temperature till 180 °C and thereby decreases due to collapse of the fluorite framework. A second rise in conductivity at higher temperatures beyond 500-618 °C is due to phase transition of ZrO2. DTA and X-ray powder diffraction were carried out for confirming doping effect and transition in ZrO2.The addition of Pb3O4 to ZrO2 shifted the phase transition of ZrO2 due to the interaction between Pb3O4 and ZrO2.  相似文献   

2.
The pure SrNb2O6 powders were prepared at 1400 °C by a conventional solid-state method and characterized by X-ray powder diffraction and UV-vis diffuse reflection spectrum. The powders of Nb2O5 and SrNb2O6 were ball-milled together and annealed to form the Nb2O5/SrNb2O6 composite. Photocatalytic activities of the composites were investigated on the degradation of methyl orange. The results show that the proportion of Nb2O5 to SrNb2O6 and the annealing temperature greatly influence the photocatalytic activities of the composites. The best photocatalytic activity occurs when the weight proportion of Nb2O5 to SrNb2O6 is 30% and the annealing temperature is 600 °C. The tremendously enhanced photocatalytic activity of the Nb2O5/SrNb2O6 composite compared to Nb2O5 or SrNb2O6 is ascribed to the heterojunction effect taking place at the interface between particles of Nb2O5 and SrNb2O6. The powders also show a higher photocatalytic activity than commercial anatase TiO2.  相似文献   

3.
K4Nb6O17 was prepared by hydrothermal treatment of Nb2O5 in KOH solution at 180 °C, and then Methylene blue (MB) intercalated K4Nb6O17 (K4Nb6O17-MB) was prepared by one-pot reaction in which n-propylamine (PA) was used as an intercalation compound. The MB intercalated structure of K4Nb6O17-MB was characterized by HRTEM and XRD measurements. K4Nb6O17-MB shows good absorption in the visible region and is thermally stable up to 328 °C. By extending the hydrothermal time and selecting the K4Nb6O17 with high crystallinity, the K4Nb6O17-MB prepared by one-pot reaction showed higher visible light (λ>550 nm) photocatalytic activity than that prepared by traditional two-step electrostatic self-assembly deposition (ESD) method for the degradation of methyl orange (MO).  相似文献   

4.
Polycrystalline sample of Ca3Nb2O8 was prepared by a high-temperature solid-state reaction technique. X-ray diffraction (XRD) analysis confirms the formation of single-phase compound of hexagonal (rhombohedral) crystal structure at room temperature. Scanning electron micrograph of the material showed uniform grain distribution on the surface of the sample. Detailed studies of dielectric properties of the compound, studied in a wide frequency range (102-106 Hz) at different temperatures (25-500 °C), exhibit a dielectric anomaly suggesting phase transition of ferroelectric-paraelectric and structural type at 300 °C. Electrical properties of the material were analyzed using a complex impedance technique. The Nyquists plot showed the presence of bulk effect in the material in the studied temperature range. Studies of electrical conductivity over a wide temperature range suggest that the compound has negative temperature coefficient of resistance behavior.  相似文献   

5.
The antiferroelectric material Cs2Nb4O11 transforms at 165 °C from a low-temperature, antiferroelectric phase in space group Pnna to a high-temperature, paraelectric phase in space group Imma; the latter structure has been determined by single-crystal X-ray diffraction. The high-temperature lattice is comprised of niobium-centered tetrahedra and octahedra connected through shared vertices and edges; cesium atoms occupy channels afforded by the three-dimensional polyhedral network. Calculated band structures for both phases predict a bandgap of 3.1-3.2 eV, which is similar to that found experimentally through photoluminescence. The calculated band structure is also conducive to its observed photocatalytic properties.  相似文献   

6.
Pyrochlore-free 0.64Pb(Ni1/3Nb2/3)O3-0.36PbTiO3 (0.64PNN-0.36PT) powder has been successfully synthesized by only one calcination step using a coating method. The formation of pyrochlore phase is prevented by coating NiCO3·2Ni(OH)2·2H2O on Nb2O5 particles. NiCO3·2Ni(OH)2·2H2O-coated Nb2O5 powder is prepared by heterogeneous precipitation method. The coating structure is confirmed by transmission electron microscope (TEM) with energy dispersive spectroscope (EDS). Single calcination treatment of the coating powder mixed with appropriate amounts of Pb3O4 and TiO2 powders at 900 °C for 2 h produces the pure-perovskite 0.64PNN-0.36PT powder. The elimination of the pyrochlore phase can be explained in terms of the separating of Pb3O4 and Nb2O5 by the NiCO3·2Ni(OH)2·2H2O coating layer.  相似文献   

7.
Field cooling (FC) poled/unpoled PMN-29%PT single crystal and room temperature (RT) poled/unpoled PMN-34.5%PT textured ceramic were investigated between ∼0 and 300 °C by thermal expansion, dielectric and Raman spectroscopy. New phase transitions are evidenced at 40, 91 and 180 °C in the case of FC PMN-29%PT as well as at 70 and 200 °C for RT PMN-34.5%PT and their order is discussed. The physical properties of the textured ceramics are rather similar to the ones observed for the single crystals that make them low-cost alternative for a wide range of applications. However, the temperatures and character of the phase transitions strongly depend on the kind of the poling conditions. Temperature dependences of the Raman line parameters show that the NbO6 octahedra remain stable during temperature increase, while TiO6 ones evolve quasi-continuously. The step transitions of the Pb2+ ion sublattice are evidenced. This suggests that the TiO6 and Pb2+ sublattices are especially coupled. The role of the TiO6 clusters on the structural phase transitions and dielectric properties of the PbMg1/3Nb2/3O3-xPbTiO3 (PMN-PT) system is discussed. The presence of the Raman modes above the maximum dielectric permittivity reveals that the local symmetry is lower than the cubic one (Pm3m). The decrease of the Raman line intensities vs. temperature indicates precisely the continuous evolution of the local symmetry towards the cubic one. The temperature evolution of the Rayleigh wing parameters appears sensitive to the phase transitions’ presence.  相似文献   

8.
The complex dielectric and AC conductivity response of BaBi2Nb2O9 relaxor ferroelectric ceramics were studied as a function of frequency (100 Hz-10 MHz) at various temperatures. The observed dielectric behavior was characterized by two types of relaxation processes which were described by the ‘universal relaxation law’. The frequency dependence of conductivity which showed a classical relaxor behavior followed the Jonscher's universal law σ(ω)=σ0+Aωn. The exponent n exhibited a minimum in the vicinity of temperatures of dielectric anomaly while the pre-factor A showed a maximum. The temperature dependence of n followed the Vogel-Fulcher relation with activation energy of about 0.14 eV.  相似文献   

9.
The dielectric, optical and non-linear optical properties of Ba6Ti2Nb8O30 single crystals were examined from room temperature up to the Curie temperature of 245°C. The spontaneous polarization at room temperature was estimated as 0·22±0·01 C/m2. The linear electrooptic constants were measured as r33T=(1·17±0·02)×10?10 and r13T=(0·42±0·01)×10?10 m/V. The non-linear optical coefficients were d33=(15·1±2·0)×10?12 and d31=(11·0±2·0)×10?12 m/V, which are comparable to those of Ba4Na2Nb10O30. Temperature dependences of δ33 and δ31 (Miller's δ) were found to be proportional to that of Ps.  相似文献   

10.
Dense composites were prepared through incorporating the dispersed Ni0.8Zn0.2Fe2O4 ferromagnetic particles into Sr0.5Ba0.5Nb2O6 ferroelectric matrix. Extrinsic dielectric relaxation and associated high permittivities of the materials are reported in the composites. We used an ideal equivalent circuit to explain electrical responses in impedance formalism. A Debye-like relaxation in the permittivity formalism was also found. Interestingly, real permittivity (ε′) of the sample containing 30% Ni0.8Zn0.2Fe2O4 shows obvious independence of the temperature at 100 kHz. Dielectric relaxation and high-ε′ properties of the composites are explained in terms of the Maxwell-Wagner (MW) polarization model.  相似文献   

11.
This paper reports the spectral properties of Nd3+:Ca2Nb2O7. The spectral parameters of Nd3+ in Nd3+:Ca2Nb2O7 crystal have been investigated based on Judd-Ofelt theory. The spectral parameters were obtained. The parameters of line strengths Ωλ are Ω2=4.967×10−20 cm2, Ω4=5.431×10−20 cm2, Ω6=5.693×10−20 cm2. The radiative lifetime, the fluorescence lifetime and the quantum efficiency are 122 μs, 103 μs and 84.4%, respectively. The fluorescence branch ratios calculated: β1=0.425, β2=0.479, β3=0.091, β4=0.004. The emission cross section at 1068 nm is 6.204×10−20 cm2.  相似文献   

12.
In this paper a neutron powder diffraction structural study of the Li ion conducting garnet-related system, Li6SrLa2Nb2O12, is reported. The results show that this phase is cubic, space group Ia-3d, and contains Li in two partially occupied crystallographic sites. The first site, Li1, corresponds to the ideal tetrahedral site in the garnet framework and possesses an occupancy of 0.59(1). The second site, Li2, is significantly more distorted and possesses an occupancy of 0.352(3). Compared to the related Li5La3Nb2O12 system, the Li2 site occupancy is greatly increased, while the Li1 site occupancy is reduced. Despite these large differences in site occupancies, the reported conductivities for Li5La3Nb2O12 and Li6SrLa2Nb2O12 are similar, showing the complexities of these new garnet Li ion conductors.  相似文献   

13.
Basic structural aspects about the layered hexaniobate of K4Nb6O17 composition and its proton-exchanged form were investigated mainly by spectroscopic techniques. Raman spectra of hydrous K4Nb6O17 and H2K2Nb6O17·H2O show significant modifications in the 950-800 cm−1 region (Nb-O stretching mode of highly distorted NbO6 octahedra). The band at 900 cm−1 shifts to 940 cm−1 after the replacement of K+ ion by proton. Raman spectra of the original materials and the related deuterated samples are similar suggesting that no isotopic effect occurs. Major modifications were observed when H2K2Nb6O17 was dehydrated: the relative intensity of the band at 940 cm−1 decreases and new bands seems to be present at about 860-890 cm−1. The H+ ions should be shielded by the hydration sphere what preclude the interaction with the layers. Removing the water molecules, H+ ions can establish a strong interaction with oxygen atoms, decreasing the bond order of Nb-O linkage. X-ray absorption near edge structure studies performed at Nb K-edge indicate that the niobium coordination number and oxidation state remain identical after the replacement of potassium by proton. From the refinement of the fine structure, it appears that the Nb-Nb coordination shell is divided into two main contributions of about 0.33 and 0.39 nm, and interestingly the population, i.e., the number of backscattering atoms is inversed between the two hexaniobate materials.  相似文献   

14.
Phase pure perovskite (1−xy)Pb(Ni1/3Nb2/3)O3-xPb(Zn1/3Nb2/3)O3-yPbTiO3 (PNN-PZN-PT) ferroelectric ceramics were prepared by conventional solid-state reaction method via a B-site oxide mixing route. The PNN-PZN-PT ceramics sintered at the optimized condition of 1185 °C for 2 h exhibit high relative density and rather homogenous microstructure. With the increase of PbTiO3 (PT) content, crystal structure and electrical properties of the synthesized PNN-PZN-PT ceramics exhibit successive phase transformation. A morphotropic phase boundary (MPB) is supposed to form in (0.9−x)PNN-0.1PZN-xPT at a region of x=32-36 mol% confirmed by X-ray diffraction (XRD) measurement and dielectric measurement. The MPB composition can be pictured as providing a “bridge” connecting rhombohedral ferroelectric (FE) phase and tetragonal one since crystal structure of the MPB composition is similar to both the rhombohedral and tetragonal lattices. Dielectric response of the sintered PNN-PZN-PT ceramics also exhibits successive phase-transition character. 0.64PNN-0.1PZN-0.26PT exhibits broad, diffused and frequency dependent dielectric peaks indicating a character of diffused FE-paraelectric (PE) phase transition of relaxor ferroelectrics and 0.40PNN-0.1PZN-0.50PT exhibits narrow, sharp and frequency independent dielectric peaks indicating a character of first-order FE-PE phase transition of normal ferroelectrics. The FE-PE phase transition of 0.56PNN-0.1PZN-0.34PT is nearly first-order with some diffused character, which also exhibits the largest value of piezoelectric constant d33 of 462pC/N.  相似文献   

15.
Structural, electric and magnetic properties of Ba3Mg1−xCoxNb2O9 based dielectric ceramic compounds have been studied. The samples, prepared by a solid state reaction method, were characterised by X-ray powder diffraction (XRPD), electron microscopy (SEM), dielectric (ε(T)) and magnetic measurements (χ−1(T)). The XRPD analyses showed that the crystal structure of these compounds does change by the increase of substitution degree, passing from a superstructure hexagonal-type, (no. 164), space group (SG) to a simple structure cubic-type, (no. 221), SG. However, the evolution of the elementary unit cell lattice parameter can be followed and it exhibit a linear increasing tendency with increase in the substitution, indicating the existence of a solid solution through out the investigated range of substitution (0-1). The microstructure analysis shows a variation in the grain size and also the porosity of the samples with the degree of substitution. The results are in good agreement with that of dielectric measurements, which also showed that the dielectric constant (ε) increases with the increase of cobalt content. The magnetic characterization of cobalt substituted samples showed an antiferromagnetic type super-exchange interaction between these magnetic ions. At the same time, the values of effective magnetic momentum (μeff) are close to the value that corresponds to Co2+ free ions. The study highlights the possibility of modelling these materials by substitutions, in order to improve properties of negative-positive-zero (NPO) type dielectric applications.  相似文献   

16.
Microstructure, phase transformation behavior and dielectric properties of BaTi1−x(Al1/2Nb1/2)xO3 (0.01≤x≤0.40) ceramics were investigated. A high level of (Al1/2Nb1/2)4+ substitution for Ti4+ ions was not conducive to the stability of the perovskite structure and resulted in the formation of BaAl2O4. As x was increased, lattice constants and unit cell volume decreased, reached a minimum at x=0.10 and then increased. The BaTi1−x(Al1/2Nb1/2)xO3 ceramics at room temperature experienced a transformation from ferroelectric to paraelectric phase with increasing (Al1/2Nb1/2)4+ concentration. Meanwhile, permittivity of the BaTi1−x(Al1/2Nb1/2)xO3 ceramics was markedly reduced, while Q value was slightly increased. Frequency dispersion of dielectric peak was obviously increased as x was increased from 0.01 to 0.10. It is of great interest that a dielectric abnormity represented by a broad dielectric peak at 200-400 K was observed for the composition with x=0.40.  相似文献   

17.
The crystal structure and electromagnetic properties as well as thermal stability of the A-site ordered PrBaMn2O6 manganites have been investigated. These samples have been prepared by using ‘two-steps’ synthesis mode. They have tetragonal structure with no tilt of MnO6 octahedra and show ferromagnetic metal to paramagnetic semiconductor transition. The most significant structural feature of the A-site ordered manganites is that the MnO2 sublattice is sandwiched by two types of rock-salt layers PrO and BaO. The different degree of Pr and Ba ions in the A-sublattice is revealed. The A-site ordered PrBaMn2O6 sample with maximum degree of the A-site order demonstrates ferromagnetic metallic to paramagnetic insulating transition with the Curie point ∼320 K. The A-site disordered Pr0.50Ba0.50MnO3 sample is ferromagnetic metal below TC≈140 K. The cation order in these compounds is stable in air up to 1300 °C. For the partly A-site ordered samples the magnetic and electronic phase separation is observed. The magnetotransport properties of the A-site ordered manganites treated under different conditions are discussed in terms of the superexchange interactions and A-site order degree.  相似文献   

18.
This paper reports the dielectric and impedance characteristics of ferroelectric SrBi2Nb2O9 (SBN) ceramics in the 100 Hz-1 MHz frequency range at various temperatures (300-823 K). A strong low frequency dielectric dispersion (LFDD) associated with an impedance relaxation has been found to exist in these ceramics in the temperature range 573-823 K. The Z″ of the AC complex impedance showed two distinct slopes in the frequency range 100 Hz-1 MHz suggesting the existence of two dispersion mechanisms. This non-ideal behavior has been explained on the basis of the expression, Z*=R0/(1+(/ω1)m+(/ω2)n) [J. Phys. Chem. Solids 53 (1992) 1] where ω1 and ω2 characterize the lattice response and the charge carrier behavior, respectively. The exponents m and n were obtained from the curve fitting. The exponent n was found to exhibit a minimum at the Curie temperature, Tc (723 K) whereas the m was temperature independent.  相似文献   

19.
Polycrystalline samples of Ba5NdTi3−xZrxNb7O30 (x=0, 1, 2, 3) compounds of the tungsten-bronze (TB) structural family were prepared by a high-temperature solid-state reaction technique. X-ray study of the compounds shows the formation of single phase compounds in the orthorhombic crystal system at room temperature. Detailed studies of the dielectric properties (dielectric constant and loss tangent) as a function of temperature (−50 to 350°C) at four different frequencies, 1, 10, 100 and 1000 kHz show relaxor behavior and diffuse phase transition of the compounds. Study of temperature dependence of resistivity shows that these compounds have negative temperature coefficients of resistance (NTCR).  相似文献   

20.
Neutron scattering has been used to measure the charge and spin structure in the YBa2Cu3O6+x superconductors. Incommensurate static charge ordering is found at low doping levels while only charge fluctuations are found at higher doping. The spin structure is complex with both a commensurate resonance and incommensurate structure observed at low temperatures. The scattering results are used to construct a phase diagram for stripes in the YBa2Cu3O6+x system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号