首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
应用多光子非线性Compton散射和实验探测的方法,对超强激光瞬态等离子体的频率响应特性进行了研究,提出了将入射超强激光和Compton散射光作为形成等离子体碰撞频率的新机制,给出了电子碰撞频率的时空演化方程和实验结果。结果表明:与散射前相比,4.17 kHz以下的功率谱线较平滑,不同时刻抖动幅度不大,且抖动的频率降低了1.63 kHz。当频率达到6.12 kHz时,功率谱线出现了35mW幅度抖动,且大幅抖动的频率降低了0.88 kHz,幅度增大了5mW。当频率达到9.7 kHz时,功率谱线的峰值近似于全谱峰值,且该谱线峰值的频率降低了1.3kHz。由4.17~9.7kHz低频谱产生的功率谱线缩小了0.21 kHz。超过9.1 kHz后,功率谱线抖动对功率谱线峰值的贡献是次要的。这主要是由于散射使等离子体的高频非线性成分增大,低频成分缩小,且4.17~9.7 kHz中亦包含有散射贡献的缘故。  相似文献   

2.
应用多光子非线性Compton散射模型、空间动态补偿模型、非线性薛定谔方程和数值模拟方法,研究了Compton散射对超强飞秒激光等离子体中通道的影响,提出了将Compton散射光作为形成等离子体通道的新机制,给出了超强飞秒激光脉冲在等离子体中传播和电子密度随时间变化的非线性修正方程,并进行了数值模拟。并研究发现:散射使等离子体中电子密度峰值增大1个量级,半径增大1mm。激光最大功率密度被限制在1018W/m2以下,随传输距离增大缓慢衰减。传输初始阶段,单脉冲衰减能量较散射前增大2%,之后衰减较平缓。通过增加超强飞秒激光脉冲输入功率,能有效地增加电子密度峰值,有利于等离子体通道的形成。并对所的结论给出了初步物理解释。  相似文献   

3.
应用多光子非线性Compton散射模型、空间动态补偿模型、非线性薛定谔方程和数值模拟方法,研究了Compton散射对超强飞秒激光等离子体中通道的影响,提出了将Compton散射光作为形成等离子体通道的新机制,给出了超强飞秒激光脉冲在等离子体中传播和电子密度随时间变化的非线性修正方程,并进行了数值模拟.研究发现:散射使等离子体中电子密度峰值增大1个量级,半径增大1 mm.激光最大功率密度被限制在10~(18)W/m~2以下,随传输距离增大缓慢衰减.传输初始阶段,单脉冲衰减能量较散射前增大2%,之后衰减较平缓.通过增加超强飞秒激光脉冲输入功率,能有效地增加电子密度峰值,有利于等离子体通道的形成.并对所的结论给出了初步物理解释.  相似文献   

4.
应用多光子非线性Compton散射模型和电磁波与等离子体相互作用模型,研究了Compton散射对等离子体平面反射电磁波特性的影响,提出了将Compton散射作为影响等离子体平面反射电磁波的机制,给出了等离子体平面反射电磁波反射率的修正方程,并进行了仿真实验.结果表明:不同频率下,低频段等离子体密度随电场强度增大而迅速增大,到达平衡态时间明显缩短,这是因散射使场强迅速增大,等离子体中粒子发生电离几率增大的缘故.高频入射波使反射波强度减低最多,最后几乎趋于0,这是因散射使等离子体频率高于入射波频率的成分大大增加的缘故.不同频率入射波的反射波频率有微小增大,这是因散射使信号与等离子体复合扩散时间尺度差距缩小,反射波的非线性效应逐步显现的缘故.随碰撞频率增大,低密度等离子体密度增加最快,到达平衡态时间最短,这是因散射使等离子体碰撞频率增大,有更多粒子参与电离的缘故.  相似文献   

5.
应用多光子非线性Compton散射模型和电流密度拉普拉斯变换改进的时域有限差分法,研究了超强激光照射三维时变等离子体的散射特性,提出了Compton散射光是影响等离子体散射的新机制,给出了该等离子体散射截面和频率随时间变化的修正方程,并进行了数值仿真。结果表明:与Compton散射前相比,Compton散射使等离子体散射截面增大,且随频率增大迅速衰减。这是因散射使等离子体中电子从耦合激光场中获得更多能量,从而导致电子被耦合场俘获的缘故;使瞬变等离子体最大频率随时间呈准直线缓慢下降趋势。这是因散射使等离子体中电子辐射阻尼效应增强,从而导致电子能量衰减、频率下降的缘故;使缓变等离子体频率随时间缓慢增大。这是因散射使等离子体中电子辐射阻尼增大效应减弱了频率增大的缘故。  相似文献   

6.
应用多光子非线性Compton散射模型和电流密度拉普拉斯变换改进的时域有限差分法,研究了超强激光照射三维时变等离子体的散射特性,提出了Compton散射光是影响等离子体散射的新机制,给出了该等离子体散射截面和频率随时间变化的修正方程,并进行了数值仿真。结果表明:与Compton散射前相比,Compton散射使等离子体散射截面增大,且随频率增大迅速衰减。这是因散射使等离子体中电子从耦合激光场中获得更多能量,从而导致电子被耦合场俘获的缘故;使瞬变等离子体最大频率随时间呈准直线缓慢下降趋势。这是因散射使等离子体中电子辐射阻尼效应增强,从而导致电子能量衰减、频率下降的缘故;使缓变等离子体频率随时间缓慢增大。这是因散射使等离子体中电子辐射阻尼增大效应减弱了频率增大的缘故。  相似文献   

7.
多光子非线性Compton散射的能量转换   总被引:20,自引:0,他引:20  
郝东山  黄燕霞 《光子学报》2003,32(4):441-443
研究了多光子非线性Compton散射中电子与光子的能量转换及其转换效率.结果表明:散射光子频率随电子吸收光子数n的增大而增大,随碰撞非弹性成分ξ的增大而迅速减小.在超强激光场中,当极端相对论性电子与光子发生多光子非线性Compton散射且被光场俘获时,能量转换效率趋于无限大,即电子可以从超强激光场中获得巨大的加速能量.用高速电子束入射并与光子发生多光子非线性Compton散射,是提高非线性Compton散射能量转换效率的重要途径.  相似文献   

8.
Compton散射下激光等离子体纵波色散特性   总被引:1,自引:0,他引:1  
应用电子与多光子集团非线性Compton散射模型,研究了Compton散射下激光等离子体纵波色散特性.结果表明:长波支纵色散曲线由解析上的长波、数值计算结果和短波组成,长波支和短波支纵色散均随相对论正负电子对特征温度的增大而增大,随Compton散射引起的频率的增量的增大而降低,且单温激光等离子体的色散曲线与散射前的双温等离子体的色散曲线相似.  相似文献   

9.
应用多光子非线性Compton散射模型和电磁波与等离子体相互作用模型,研究了Compton散射对等离子体平面反射电磁波特性的影响,提出了将Compton散射作为影响等离子体平面反射电磁波的机制,给出了等离子体平面反射电磁波反射率的修正方程,并进行了仿真实验。结果表明:不同频率下,低频段等离子体密度随电场强度增大而迅速增大,到达平衡态时间明显缩短,这是因散射使场强迅速增大,等离子体中粒子发生电离几率增大的缘故。高频入射波使反射波强度减低最多,最后几乎趋于0,这是因散射使等离子体频率高于入射波频率的成分大大增加的缘故。不同频率入射波的反射波频率有微小增大,这是因散射使信号与等离子体复合扩散时间尺度差距缩小,反射波的非线性效应逐步显现的缘故。随碰撞频率增大,低密度等离子体密度增加最快,到达平衡态时间最短,这是因散射使等离子体碰撞频率增大,有更多粒子参与电离的缘故。  相似文献   

10.
应用多光子非线性Compton散射模型,研究了Compton散射对等离子体中激光衰减特性的影响.提出了Compton散射是影响激光衰减的一个重要机制,给出了激光能量和功率衰减值的表达式,并进行了数值模拟.结果表明,Compton散射对等离子体中传输的激光能量和功率衰减值有较大影响,理论计算和数值模拟符合得很好.这也为判断等离子体中发生Compton散射提供了依据.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号