首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
We determine the complete set of generalized spin squeezing inequalities. These are entanglement criteria that can be used for the experimental detection of entanglement in a system of spin-1/2 particles in which the spins cannot be individually addressed. They can also be used to show the presence of bound entanglement in the thermal states of several spin models.  相似文献   

2.
We determine the complete set of generalized spin squeezing inequalities, given in terms of the collective angular momentum components, for particles with an arbitrary spin. They can be used for the experimental detection of entanglement in an ensemble in which the particles cannot be individually addressed. We also present a large set of criteria involving collective observables different from the angular momentum coordinates. We show that some of the inequalities can be used to detect k-particle entanglement and bound entanglement.  相似文献   

3.
安雪碧  银振强  韩正甫 《物理学报》2015,64(14):140303-140303
宏观-微观纠缠最早起源于“薛定谔的猫”思想实验, 是指在宏观体系与微观体系之间建立量子纠缠. 实现宏观-微观纠缠可以利用多种物理体系来完成, 本文重点介绍了在光学体系中制备和检验宏观-微观纠缠的发展过程. 从最初的受激辐射单光子量子克隆到光学参量放大, 再到相空间的位移操作, 实验上制备宏观-微观纠缠的方法取得了长足的进步. 利用非线性光学参量放大过程制备的宏观-微观纠缠的光子数可以达到104量级, 人眼已经可以观察到, 因此使用人眼作为探测器来检验宏观-微观纠缠的实验开始出现. 但随后人们意识到, 粗精度的光子数探测器, 例如人眼, 无法严格判定宏观-微观纠缠的存在. 为了解决这个难题, 提出了一种巧妙的方法, 即在制备宏-微观纠缠后, 利用局域操作过程将宏观态再变为微观态, 通过判定微观纠缠存在的方法来判定宏微观纠缠的存在. 之后相空间的位移操作方法将宏观态的粒子数提高到108, 并且实现了纠缠的严格检验. 利用光机械实现宏观-微观纠缠的方案也被提出. 由于量子密钥分配中纠缠是必要条件, 而宏观-微观纠缠态光子数较多这一优势可能会对量子密钥分配的传输距离有所提高. 本文介绍了利用相位纠缠的相干态来进行量子秘钥分配的方案, 探讨了利用宏观-微观纠缠实现量子密钥分配的可能性.  相似文献   

4.
The quantum vacuum is unstable under the influence of an external electric field and decays into pairs of charged particles, a process which is known as the Schwinger pair production. We propose and demonstrate that this electric field can generate entanglement. Using the Schwinger pair production for constant and pulsed electric fields, we study entanglement for scalar particles with zero spins and Dirac fermions. One can observe the variation of the entanglement produced for bosonic and fermionic modes with respect to different parameters.  相似文献   

5.
6.
We study properties of entangled systems in the (mainly non-relativistic) second quantization formalism. This is then applied to interacting and non-interacting bosons and fermions and the differences between the two are discussed. We present a general formalism to show how entanglement changes with the change of modes of the system. This is illustrated with examples such as the Bose condensation and the Unruh effect. It is then shown that a non-interacting collection of fermions at zero temperature can be entangled in spin, providing that their distances do not exceed the inverse Fermi wavenumber. Beyond this distance all bipartite entanglement vanishes, although classical correlations still persist. We compute the entanglement of formation as well as the mutual information for two spin-correlated electrons as a function of their distance. The analogous, non-interacting collection of bosons displays no entanglement in the internal degrees of freedom. We show how to generalize our analysis of the entanglement in the internal degrees of freedom to an arbitrary number of particles.  相似文献   

7.
量子系统间的Bell非定域性是一种比量子纠缠更为严格的量子关联,它在刻画多体量子关联有着不可或缺的作用.类似于量子纠缠,在开放两量子比特和三量子比特系统中的Bell非定域性可能会出现猝死现象.本文建议了一个可供选择的方案即在热库环境中通过增加辅助粒子来调控两量子比特和三量子比特间的Bell非定域性动力学.研究发现:通过调节辅助粒子数目,不仅两量子比特和三量子比特系统的Bell非定域性可以避免猝死现象的发生,而且在长时间极限下它能维持在一个较高水平.论文得到的结果将对多体量子系统间量子关联的调控和避免猝死现象等相关研究有积极的指导意义.  相似文献   

8.
We present a general scheme for entangling any degree of freedom of two uncorrelated identical particles from independent sources by a combination of two-particle interferometry and which-way detection. We show that this entanglement generation procedure works for completely random initial states of the variable to be entangled. We also demonstrate a curious complementarity exhibited by our scheme and its applications in estimating the generated entanglement as a function of wave packet overlap at the beamsplitter.  相似文献   

9.
We investigate the quantum-memory-assisted entropic uncertainty for an entangled two-qubit system in a local quantum noise channel with PT-symmetric operation performing on one of the two particles. Our results show that the quantum-memory-assisted entropic uncertainty in the qubits system can be reduced effectively by the local PT-symmetric operation. Physical explanations for the behavior of the quantum-memory-assisted entropic uncertainty are given based on the property of entanglement of the qubits system and the non-locality induced by the re-normalization procedure for the non-Hermitian PT-symmetric operation.  相似文献   

10.
Quantum systems such as, for example, photons, atoms, or Bose-Einstein condensates, prepared in complex states where entanglement between distinct degrees of freedom is present, may display several intriguing features. In this Letter we introduce the concept of such complex quantum states for intense beams of light by exploiting the properties of cylindrically polarized modes. We show that already in a classical picture the spatial and polarization field variables of these modes cannot be factorized. Theoretically it is proven that by quadrature squeezing cylindrically polarized modes one generates entanglement between these two different degrees of freedom. Experimentally we demonstrate amplitude squeezing of an azimuthally polarized mode by exploiting the nonlinear Kerr effect in a specially tailored photonic crystal fiber. These results display that such novel continuous-variable entangled systems can, in principle, be realized.  相似文献   

11.
The quantum nature of bulk ensemble NMR quantum computing the center of recent heated debate,is addressed. Concepts of the mixed state and entanglement are examined, and the data in a two-qubit liquid NMRquantum computation are analyzed. The main points in this paper are: i) Density matrix describes the “state“ of anaverage particle in an ensemble. It does not describe the state of an individual particle in an ensemble; ii) Entanglementis a property of the wave function of a microscopic particle (such as a molecule in a liquid NMR sample), and separabilityof the density matrix cannot be used to measure the entanglement of mixed ensemble; iii) The state evolution in bulk-ensemble NMRquantum computation is quantum-mechanical; iv) The coefficient before the effective pure state densitymatrix, e, is a measure of the simultaneity of the molecules in an ensemble. It reflects the intensity of the NMR signaland has no significance in quantifying the entanglement in the bulk ensemble NMR system. The decomposition of thedensity matrix into product states is only an indication that the ensemble can be prepared by an ensemble with theparticles unentangled. We conclude that effective-pure-state NMR quantum computation is genuine, not just classicalsimulations.  相似文献   

12.
We investigate the generation and the evolution of continuous-variable (CV) entanglement from a laser-driven four-state atom inside a doubly resonant cavity under Raman excitation. Two transitions in the four-state atom independently interact with the two cavity modes, while two other transitions are driven by coupling laser fields. By including the atomic relaxation as well as cavity losses, we show that the CV entanglement with large mean number of
photons can be generated in our scheme. We also show that the intensity of the coupling laser fields can influence effectively the entanglement period of the cavity field. Different from the conventional resonant excitation scheme where zero one-photon detuning are required, it is found that the intensity and period of entanglement between the two cavity modes as well as the total mean photon number of the cavity field can be adjusted by properly
modulating the frequency detuning.  相似文献   

13.
Recently great attention has been addressed to the study of quantum correlations in systems of identical particles. Various definitions of entanglement for indistinguishable particles are present in the literature. Following Schliemann’s theory, here we perform a quantitative evaluation of the entanglement dynamics for electron-electron scattering in a 2D system in terms of the von Neumann entropy of the reduced one-particle density matrix. Our approach allows us to define the time of entanglement formation and to investigate the role of the space and spin degrees of freedom in the building up of quantum correlations. The text was submitted by the authors in English.  相似文献   

14.
杨青  杨名  李大创  曹卓良 《中国物理 B》2009,18(11):4662-4666
The entanglement property of two identical atoms, initially entangled in Bell states, coupled to a single-mode cavity is considered. Based on the reduced non-perturbative quantum master equation method, the entanglement evolution of the two atoms with decay is investigated beyond the conventional rotating-wave approximation. We show that the counter-rotating wave terms, usually neglected, have a great influence on the disentanglement behaviour of the system. The phenomena of entanglement sudden death and entanglement sudden birth will occur. In addition, we show that the entanglement can be strengthened by introducing the dipole--dipole interaction of the two atoms.  相似文献   

15.
Quantum mechanics is seen to be incomplete not because it cannot explain the correlations that characterize entanglement without invoking either non-locality or realism, both of which, despite special relativity or no-go theorems, are at least conceivable. Quantum mechanics is incomplete, in a perhaps broader than hidden variable sense, because it fails to address within its theoretical structure the question of how even a single particle, by being in a given quantum state, causes the frequency distribution of measurement values specified by the state. This incompleteness of quantum mechanics as it is currently conceived is both fundamental and indefeasible. Failure to address the question of how the states of entangled particles are given effect to yield the correlations they specify is simply a particular albeit attention arresting instance of this incompleteness. But if that is so then quantum mechanics cannot be held to be inconsistent with locality.  相似文献   

16.
We show that three conditions associated with “entanglement,”viz., non-locality, non-factorisability and statistical dependence, are equivalent for pure states, and that non-factorisability and statistical dependence are equivalent for mixed states. Discussion then reinforces the generally held view that the key condition for mixed states is nonseparability.  相似文献   

17.
张秦榕  王彬彬  张孟龙  严冬 《物理学报》2018,67(3):34202-034202
量子纠缠是量子信息处理和量子计算中不可或缺的物理资源,制备稳定可操控的量子纠缠是研究的热点之一.里德伯原子具有不同于普通中性原子的特点,长寿命和原子之间强烈的偶极相互作用,使得它成为量子信息处理和量子计算的最优候选者.本文在稀薄里德伯原子气体中,构建了空间四面体排布的里德伯原子模型(空间等距的四个原子模型),通过数值求解主方程来研究两体纠缠和里德伯激发的稳态和瞬态动力学性质,发现偶极阻塞机制下的量子纠缠最大,其他满足反偶极阻塞条件的高阶激发引起的纠缠较小,进而从理论上分析了这两种机制下量子纠缠的物理实质.  相似文献   

18.
郭红 《物理学报》2015,64(22):220301-220301
量子关联是量子信息、量子计算与量子计量领域的重要资源, 在量子纠缠和贝尔非局域性中, 两子系统起着同等关键的作用, Einstein-Podolsky-Rosen (EPR)量子引导关联的强度介于量子纠缠和贝尔非局域性之间, 对单向EPR量子引导关联而言两子系统的作用不对等. 本文研究了双模Bose-Hubbard模型中模间量子关联的动态特性, 揭示了EPR量子引导关联的取向对系统初态模间交换对称性的依赖关系. 根据Hillery-Zubairy纠缠判据以及基于最大平均量子Fisher信息的纠缠判据考察了系统初态对模间量子纠缠演化规律的影响. 如果模间耦合强度远大于同一势阱内粒子间的相互作用, 初始处于SU(2)相干态的系统在具有确定的两子系统交换对称性的条件下, 其量子关联呈现简单的周期性演化规律; 当这种对称性破缺时, 模间量子关联的演化呈现较复杂的崩塌与回复现象.  相似文献   

19.
We study the dynamics of two-level atomic systems(qubits) subject to a double-layer environment that consists of a network of single-mode cavities coupled to a common reservoir. A general exact master equation for the dynamics of a qubit system can be obtained by the quantum-state-diffusion(QSD) approach, which is extended to our spin-cavity-boson model. The quantumness of the atoms comprising coherence and entanglement is investigated for various configurations of the double-layer environment.The findings indicate that parametric control is available for the preservation and generation of system-quantumness by regulating the cavity network. Moreover the underlying physics is profoundly revealed by an effective model obtained by a unitary transformation. Therefore, our work provides an interesting proposal to protect the quantumness of open systems in the framework of a double-layer environment containing bosonic modes.  相似文献   

20.
张建松  许晶波 《中国物理 B》2009,18(6):2288-2293
We investigate the entanglement of a three-level atom in λ configuration interacting with two quantized field modes by using logarithmic negativity. Then, we study the relationship of the atomic coherence and the entanglement between two fields which are initially prepared in vacuum or thermal states. We find that if the two fields are prepared in thermal states, the atomic coherence can induce the entanglement between two thermal fields. However, there is no coherence-induced entanglement between two vacuum fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号