首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《中国物理 B》2021,30(6):60315-060315
The fine-grained uncertainty relation(FUR) is investigated for accelerating open quantum system, which manifests the celebrated Unruh effect, a crucial piece of the jigsaw for combining relativity and quantum physics. For a single detector, we show that the inevitable Unruh decoherence can induce a smaller FUR uncertainty bound, which indicates an additional measurement uncertainty may exist. For an open system combined with two detectors, via a nonlocal retrieval game, the related FUR uncertainty bound is determined by the non-classical correlation of the system. By estimating the maximal violation of Bell inequality for an accelerating system, we show that the FUR uncertainty bound can be protected from Unruh decoherence, due to quantum correlation generated through Markovian dynamics.  相似文献   

2.
We obtained an exact solution for a uniformly accelerated Unruh–DeWitt detector interacting with a massless scalar field in (3 + 1) dimensions which enables us to study the entire evolution of the total system, from the initial transient to late-time steady state. We find that the conventional transition probability of the detector from its initial ground state to excited states, as derived from time-dependent perturbation theory over an infinitely long duration of interaction, is valid only in the transient stage and is invalid for cases with proper acceleration smaller than the damping constant. We also found that, unlike in (1 + 1)D results, the (3 + 1)D uniformly accelerated Unruh– DeWitt detector in a steady state does emit a positive radiated power of quantum nature at late-times, but it is not connected to the thermal radiance experienced by the detector in the Unruh effect proper.  相似文献   

3.
We review the relation between AdS spacetime in 1 $+$ 2 dimensions and the BTZ black hole (BTZbh). Later we show that a ground state in AdS spacetime becomes a thermal state in the BTZbh. We show that this is true in the bulk and in the boundary of AdS spacetime. The existence of this thermal state is tantamount to say that the Unruh effect exists in AdS spacetime and becomes the Hawking effect for an eternal BTZbh. In order to make this we use the correspondence introduced in algebraic holography between algebras of quasi-local observables associated to wedges and double cones regions in the bulk of AdS spacetime and its conformal boundary respectively. Also we give the real scalar quantum field as a concrete heuristic realization of this formalism.  相似文献   

4.
The Unruh effect is one of the most fundamental manifestations of the fact that the particle content of a field theory is observer dependent. However, there has been so far no experimental verification of this effect, as the associated temperatures lie far below any observable threshold. Recently, physical phenomena, which are of great experimental challenge, have been investigated by quantum simulations in various fields. Here we perform a proof-of-principle simulation of the evolution of fermionic modes under the Unruh effect with a nuclear magnetic resonance(NMR) quantum simulator. By the quantum simulator, we experimentally demonstrate the behavior of Unruh temperature with acceleration, and we further investigate the quantum correlations quantified by quantum discord between two fermionic modes as seen by two relatively accelerated observers. It is shown that the quantum correlations can be created by the Unruh effect from the classically correlated states. Our work may provide a promising way to explore the quantum physics of accelerated systems.  相似文献   

5.
We present a stochastic theory for the nonequilibriurn dynamics of charges moving in a quantum scalar field based on the worldline influence functional and the close-time-path (CTP or in-in) coarse-grained effective action method. We summarize (1) the steps leading to a derivation of a modified Abraham-Lorentz-Dirac equation whose solutions describe a causal semiclassical theory free of runaway solutions and without pre-acceleration patholigies, and (2) the transformation to a stochastic effective action, which generates Abraham-Lorentz-Dirac-Langevin equations depicting the fluctuations of a particle’s worldline around its semiclassical trajectory. We point out the misconceptions in trying to directly relate radiation reaction to vacuum fluctuations, and discuss how, in the framework that we have developed, an array of phenomena, from classical radiation and radiation reaction to the Unruh effect, are interrelated to each other as manifestations at the classical, stochastic and quantum levels. Using this method we give a derivation of the Unruh effect for the spacetime worldline coordinates of an accelerating charge. Our stochastic particle-field model, which was inspired by earlier work in cosmological backreaction, can be used as an analog to the black hole backreaction problem describing the stochastic dynamics of a black hole event horizon.  相似文献   

6.
Quantum coherence of the tripartite W state and Greenberger–Horne–Zeilinger (GHZ) state under the Unruh effect are explored based on the model of a two‐level detector qubit coupled to a massless scalar field. The results reveal that Unruh thermal noise really destroys tripartite quantum resources. It is worth mentioning that the quantum coherence of the GHZ state reaches zero in the infinite acceleration limit, but that of the W‐state always remains nonzero. Coherence of the GHZ state displays a sudden death as the coupling parameter grows, while coherence freezing can be witnessed for the W state. It can be concluded that the W state is more robust than the GHZ state against Unruh radiation. Moreover, the related investigation can be expanded to N‐qubit quantum systems and the corresponding analytical solution is obtained. It indicates that the larger number W‐type entangled qubit can be as a better quantum resource for quantum information tasks under the Unruh effect.  相似文献   

7.
The ultra-high fields of high-power short-pulse lasers are expected to contribute to understanding fundamental properties of the quantum vacuum and quantum theory in very strong fields. For example, the neutral QED vacuum breaks down at the Schwinger field strength of 1.3×1018 V/m, where a virtual e+e- pair gains its rest mass energy over a Compton wavelength and materializes as a real pair. At such an ultra-high field strength, an electron experiences an acceleration of aS=2×1028g and hence fundamental phenomena such as the long predicted Unruh effect start to play a role. The Unruh effect implies that the accelerated electron experiences the vacuum as a thermal bath with the Unruh temperature. In its accelerated frame the electron scatters photons off the thermal bath, corresponding to the emission of an entangled pair of photons in the laboratory frame. While it remains an experimental challenge to reach the critical Schwinger field strength within the immediate future even in view of the enormous thrust in high-power laser developments in recent years, the near-future laser technology may allow to probe the signatures of the Unruh effect mentioned above. Using a laser-accelerated electron beam (γ~300) and a counter-propagating laser beam acting as optical undulator should allow to create entangled Unruh photon pairs (i.e., signatures of the Unruh effect) with energies of the order of several hundred keV. An even substantially improved experimental scenario can be realized by using a brilliant 20 keV photon beam as X-ray undulator together with a low-energy (γ≈2) electron beam. In this case the separation of the Unruh photon pairs from background originating from linearly accelerated electrons (classical Larmor radiation) is significantly improved. Detection of the Unruh photons may be envisaged by Compton polarimetry in a 2D-segmented position-sensitive germanium detector.  相似文献   

8.
We calculate the radiation resulting from the Unruh effect for strongly accelerated electrons and show that the photons are created in pairs whose polarizations are perfectly correlated. Apart from the photon statistics, this quantum radiation can further be discriminated from the classical (Larmor) radiation via the different spectral and angular distributions. The signatures of the Unruh effect become significant if the external electromagnetic field accelerating the electrons is not too far below the Schwinger limit and might be observable with future facilities. Finally, the corrections due to the birefringent nature of the QED vacuum at such ultrahigh fields are discussed.  相似文献   

9.
The uncertainty principle limits the ability to simultaneously predict measurement outcomes for two non-commuting observables of a quantum particle. However, the uncertainty can be violated by considering a particle as a quantum memory correlated with the primary particle. By modeling an Unruh–Dewitt detector coupled to a massless scalar field, it is explored how the Unruh effect affects the entropic uncertainty and the tighter lower bound for a pair of entangled detectors is probed when one of them is accelerated. It is found that Unruh thermal noise really gives rise to an increase of entropic uncertainty for the given conditions since the correlation between quantum memory and the measured system is decreased. It is shown that the bound of the entropic uncertainty relations, in the presence of memory, can be formulated by introducing the Holevo quantity and mutual information. It is also noticed that Adabi's lower bound is tighter than that of Berta, and just the optimal bound under the Unruh effect. Moreover, it is shown that Berta's lower bound is unrelated to the choice of complementary observables, while the optimal Adabi's lower bound is dependent on the measurement choice. It is worth mentioning that the investigations may offer a better understanding of the entropic uncertainty in a relativistic motion.  相似文献   

10.
A state that an inertial observer in Minkowski space perceives to be the vacuum will appear to an accelerating observer to be a thermal bath of radiation. We study the impact of this Davies-Fulling-Unruh noise on communication, particularly quantum communication from an inertial sender to an accelerating observer and private communication between two inertial observers in the presence of an accelerating eavesdropper. In both cases, we establish compact, tractable formulas for the associated communication capacities assuming encodings that allow a single excitation in one of a fixed number of modes per use of the communications channel. Our contributions include a rigorous presentation of the general theory of the private quantum capacity as well as a detailed analysis of the structure of these channels, including their group-theoretic properties and a proof that they are conjugate degradable. Connections between the Unruh channel and optical amplifiers are also discussed.  相似文献   

11.
We compute the entropy of a Rindler particle-detector (observer) in the presence of a quantum field in the Minkowski vacuum state; due to the Unruh effect, the observer is immersed in a thermal bath at a temperature proportional to its proper acceleration.  相似文献   

12.
Using the history projection operator (HPO) approach to consistent histories we rederive Unruh's result that an observer constantly accelerating through the Minkowski vacuum appears to be immersed in a thermal bath. We show that propositions about any symmetry of a system always form a consistent set and that the probabilities associated with such propositions are decided by their value in the initial state. We use this fact to postulate a condition on the decoherence functional in the HPO setup. Finally we show that the Unruh effect arises from the fact that the initial density matrix corresponding to the inertial vacuum can be written as a thermal density matrix in the Fock basis associated with the accelerating observer.  相似文献   

13.
We study spontaneous excitation of both a static detector (modelled by a two-level atom) immersed in a thermal bath and a uniformly accelerated one in the Minkowski vacuum interacting with a real massive scalar field.Our results show that the mass of the scalar field manifests itself in the spontaneous excitation rate of the static detector in a thermal bath (and in vacuum) in the form of a selection rule for transitions among states of the detector.However,this selection rule disappears for the accelerated ones,demonstrating that an accelerated detector does not necessarily behave the same as an inertial one in a thermal bath.We find the imprint left by the mass is the appearance of a grey-body factor in the spontaneous excitation and de-excitation rates,which maintains the detailed balance condition between them and thus ensures a thermal equilibrium at the Unruh temperature the same as that of the massless case.We also analyze quantitatively the effect of the mass on the rate of change of the detector's energy and find that when the mass is very small,it only induces a small negative correction.However,when it is very large,it then exponentially damps the rate,thus essentially forbidding any transitions among states of the detector.  相似文献   

14.
Relativistic effects on the precision of quantum metrology for particle detectors, such as two-level atoms are studied. The quantum Fisher information is used to estimate the phase sensitivity of atoms in non-inertial motions or in gravitational fields. The Unruh–DeWitt model is applicable to the investigation of the dynamics of a uniformly accelerated atom weakly coupled to a massless scalar vacuum field. When a measuring device is in the same relativistic motion as the atom, the dynamical behavior of quantum Fisher information as a function of Rindler proper time is obtained. It is found out that monotonic decrease in phase sensitivity is characteristic of dynamics of relativistic quantum estimation. The origin of the decay of quantum Fisher information is the thermal bath that the accelerated detector finds itself in due to the Unruh effect. To improve relativistic quantum metrology, we reasonably take into account two reflecting plane boundaries perpendicular to each other. The presence of the reflecting boundary can shield the detector from the thermal bath in some sense.  相似文献   

15.
In this work, we study the behaviour of two weakly coupled quantum systems, described by a separable density operator; one of them is a single oscillator, representing a microscopic system, while the other is a set of oscillators which perform the role of a reservoir in thermal equilibrium. From the Liouville-Von Neumann equation for the reduced density operator, we devise the master equation that governs the evolution of the microscopic system, incorporating the effects of temperature via Thermofield Dynamics formalism by suitably redefining the vacuum of the macroscopic system. As applications, we initially investigate the behaviour of a Fermi oscillator in the presence of a heat bath consisting of a set of Fermi oscillators and that of an atomic two-level system interacting with a scalar radiation field, considered as a reservoir, by constructing the corresponding master equation which governs the time evolution of both sub-systems at finite temperature. Finally, we calculate the energy variation rates for the atom and the field, as well as the atomic population levels, both in the inertial case and at constant proper acceleration, considering the two-level system as a prototype of an Unruh detector, for admissible couplings of the radiation field.  相似文献   

16.
We revisit the coordinate coherent states approach through two different quantization procedures in the quantum field theory on the noncommutative Minkowski plane. The first procedure, which is based on the normal commutation relation between an annihilation and creation operators, deduces that a point mass can be described by a Gaussian function instead of the usual Dirac delta function. However, we argue this specific quantization by adopting the canonical one (based on the canonical commutation relation between a field and its conjugate momentum) and show that a point mass should still be described by the Dirac delta function, which implies that the concept of point particles is still valid when we deal with the noncommutativity by following the coordinate coherent states approach. In order to investigate the dependence on quantization procedures, we apply the two quantization procedures to the Unruh effect and Hawking radiation and find that they give rise to significantly different results. Under the first quantization procedure, the Unruh temperature and Unruh spectrum are not deformed by noncommutativity, but the Hawking temperature is deformed by noncommutativity while the radiation specturm is untack. However, under the second quantization procedure, the Unruh temperature and Hawking temperature are untack but the both spectra are modified by an effective greybody (deformed) factor.  相似文献   

17.
In addition to the Larmor radiation known from classical electrodynamics, electrons in a laser field may emit pairs of entangled photons – which is a pure quantum effect. We investigate this quantum effect and discuss why it is suppressed in comparison with the classical Larmor radiation (which is just Thomson backscattering of the laser photons). Further, we provide an intuitive explanation of this process (in a simplified setting) in terms of the Unruh effect.  相似文献   

18.
We present a black box estimation paradigm of Unruh temperature in a relativistic bosonic continuous-variable setting. It is shown that the guaranteed precision for the estimation of Unruh temperature can be evaluated by the Gaussian interferometric power for a given probe state. We demonstrate that the amount of interferometric power is always beyond the entanglement type quantum correlations in a relativistic setting. It is found that due to the fact that Unruh radiation acts as a thermal bath on the probe system, it destroys available resources of the probe system and reduces the guaranteed precision of the estimation of Unruh temperature. We also find that the thermal noise induced by Unruh effect will generate interferometric power between accelerated Bob and his auxiliary partner anti-Bob, while it does not generate any correlation between inertial Alice and anti-Bob.  相似文献   

19.
We propose an experiment in which the phonon excitation of ion(s) in a trap, with a trap frequency exponentially modulated at rate kappa, exhibits a thermal spectrum with an "Unruh" temperature given by k(B)T=Planck kappa. We discuss the similarities of this experiment to the response of detectors in a de Sitter universe and the usual Unruh effect for uniformly accelerated detectors. We demonstrate a new Unruh effect for detectors that respond to antinormally ordered moments using the ion's first blue sideband transition.  相似文献   

20.
We analyze, in the paradigm of open quantum systems, the reduced dynamics of a freely falling two-level detector in de Sitter space-time in weak interaction with a reservoir of fluctuating quantized conformal scalar fields in the de Sitter-invariant vacuum. We find that the detector is asymptotically driven to a thermal state at the Gibbons-Hawking temperature, regardless of its initial state. Our discussion, therefore, shows that the Gibbons-Hawking effect of de Sitter space-time can be understood as a manifestation of thermalization phenomena that involves decoherence and dissipation in open quantum systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号