首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yuejun Ding 《中国物理 B》2022,31(6):68201-068201
Na-ion batteries (NIBs) are regarding as the optimum complement for Li-ion batteries along with the rapid development of stationary energy storage systems. In order to meet the commercial demands of cathodes for NIBs, O3-type Cu containing layered oxide Na0.90Cu0.22Fe0.30Mn0.48O2 with good comprehensive performance and low-cost element components is very promising for the practical use. However, only part of the Cu3+/Cu2+ redox couple participated in the redox reaction, thus impairing the specific capacity of the cathode materials. Herein, Mg2+-doped O3-Na0.90Mg0.08Cu0.22Fe0.30Mn0.40O2 layered oxide without Mn3+ was synthesized successfully, which exhibited improved reversible specific capacity of 118 mAh/g in the voltage range of 2.4-4.0 V at 0.2 C, corresponding to the intercalation/deintercalation of 0.47 Na+ (0.1 more than that of Na0.90Cu0.22Fe0.30Mn0.48O2). This work demonstrates an important strategy to obtain advanced layered oxide cathodes for NIBs.  相似文献   

2.
陆雅翔  赵成龙  容晓晖  陈立泉  胡勇胜 《物理学报》2018,67(12):120601-120601
在众多电化学储能技术中,室温钠离子电池除具有能量密度高、循环寿命长的特点外,还具有其他电池体系所不具有的资源丰富和成本低廉的优势,是一种较理想的规模储能电池体系.中国科学院物理研究所自2011年以来致力于低成本、安全环保的钠离子电池技术的研发,在正、负极材料和电解质材料开发中取得了多项原创性的研究成果,并研制出Ah级钠离子软包电池.例如,首次发现Cu~(2+)/Cu~(3+)氧化还原电对高度可逆并设计了Na-Cu-Fe-Mn-O基低成本层状氧化物正极材料;首次通过简单的一步碳化法制备出性价比高的无烟煤基负极材料;首次将一种新型的钠盐NaFSI应用于碳酸酯非水电解质以大幅度提升电极材料的性能等.本文综述了物理所在钠离子电池材料及器件研究中所取得的重要进展和突破,期待经过进一步不懈地努力为实现钠离子电池的产业化做出重要贡献.  相似文献   

3.
《Physics letters. A》2020,384(14):126282
Although two-dimensional (2D) materials have been proposed as the promising candidates for Na ion batteries (NIBs), electrode materials with high specific capacity and moderate diffusion energy barriers are still scare. Here, we firstly demonstrated that transition-metal borides (TMB) are much more promising electrode materials than other transition metal compounds. Density functional theory (DFT) calculations are performed to investigate the electronic properties and Na storage capability of TMB monolayer, which is realized in recent experiments. TMB monolayer forms strong chemical interaction with Na atoms, and the diffusion energy barrier of Na atoms is much lower than LIBs. Importantly, TMB monolayer exhibits a very high Na storage capacity. Such exceptional properties, including high stoichiometry (namely TMBNa2), excellent electronic conductivity, moderate Na diffusion and high operating voltage, endow TMB monolayers as very promising anode materials for NIBs.  相似文献   

4.
Hard carbons as promising anode materials for Na-ion batteries(NIBs) have captured extensive attention because of their low operation voltage, easy synthesis process, and competitive specific capacity. However, there are still several disadvantages, such as high cost and low initial coulombic efficiency, which limit their large-scale commercial applications.Herein, pine nut shells(PNSs), a low-cost biomass waste, are used as precursors to prepare hard carbon materials. Via a series of washing and heat treatment procedures, a pine nut shell hard carbon(PNSHC)-1400 sample has been obtained and delivers a reversible capacity of around 300 mAh/g, a high initial coulombic efficiency of 84%, and good cycling performance. These excellent Na storage properties indicate that PNSHC is one of the most promising candidates of hard carbon anodes for NIBs.  相似文献   

5.
The present work was performed in order to evaluate sulfamic acid as the supporting electrolyte for VO2+/VO2 + redox couple in vanadium redox flow battery. The oxidation process of VO2+ has similar electrochemical kinetics compared with the reduction process of VO2 +. The exchange current density and standard rate constant of VO2+/VO2 + redox reaction on a graphite electrode in sulfamic acid are determined as 7.6?×?10?4 A cm?2 and 7.9?×?10?5 cm s?1, respectively. The energy efficiency of the cell employing sulfamic acid as supporting electrolyte in the positive side can reach 75.87 %, which is adequate for redox flow battery applied in energy storage. The addition of NH4 + to the positive electrolyte can enhance the electrochemical performance of the cell, with larger discharge capacity and energy efficiency. The preliminary exploration shows that the vanadium sulfamate electrolyte is promising for vanadium redox flow battery and is worthy of further study.  相似文献   

6.
《Current Applied Physics》2018,18(12):1507-1512
The development of an organic-based aqueous redox flow battery (RFB) using quinone as an electroactive material has attracted great attention recently. This is because this battery is inexpensive, produces high energy density, and is environment friendly in stationary electrical energy storage applications. Herein, we investigate the redox potentials and solubilities of indole-5,6-quinone and indole-4,7-quinone derivatives in terms of the substituent effects of functional groups using theoretical calculations. Our results indicate that full-site substituted derivatives of indolequinone are more useful as active materials compared to single-site substituted derivatives. In particular, our calculations reveal that the substitution of –PO3H2 and –SO3H functional groups with multiple polar bonds is very effective in increasing the activity of the aqueous RFB. As a strategy to overcome the limitation that the aqueous solubility is intrinsically low because they are organic molecules, we suggest the substitution of functional groups with multiple polar bonds to the backbones of active organic materials. Among 180 indolequinone derivatives, 17 candidates that meet the redox potential standards (≦ 0.2 V or ≧ 0.9 V) and eight candidates with solubility exceeding 2 mol/L are identified. Three indolequinone derivatives that satisfy both conditions are finally presented as promising electroactive candidates for an aqueous RFB.  相似文献   

7.
We performed density functional theory calculations to probe sodium adsorption and diffusion properties on two-dimensional (2D) MTe2 (M = Co, Fe, Mn, Sc, Ti) first-row transition metal tellurides, and gauge their potentials as anode materials for sodium-ion batteries (NIBs). In this work, we found that all considered MTe2 possess strong sodium adsorption properties and excellent diffusion kinetics. Moreover, sodium atoms prefer to bind on sites that are farther apart rather than on nearby sites, implying that (1) the sodium clustering is not favored and (2) the large adsorption energies are essentially due to the sodium-MTe2 interaction. We further adopted ab initio random structure search to compute probable stable sodium adsorption configurations, to obtain more accurate capacities and open circuit voltages. The calculated capacities and open circuit voltage are reasonable, and are suitable for anode applications. Our results show that in general, 2D MTe2 sheets have suitable sodium adsorption energies and diffusion barriers, and could be applied as sodium ion battery anode materials.  相似文献   

8.
吴逢铁  张文珍 《光子学报》2001,30(7):780-800
本文从理论出发,分析抗共振环(Anti-ResonantRing-ARR)稳定调Q 激光脉冲的作用.将新型调Q晶体Cr4+:YAG置于ARR中心,在平-ARR介稳腔中获得能量起伏0.34%的高稳调Q单脉冲输出.  相似文献   

9.
Structure prediction methods have been widely used as a state-of-the-art tool for structure searches and materials discovery, leading to many theory-driven breakthroughs on discoveries of new materials. These methods generally involve the exploration of the potential energy surfaces of materials through various structure sampling techniques and optimization algorithms in conjunction with quantum mechanical calculations. By taking advantage of the general feature of materials potential energy surface and swarm-intelligence-based global optimization algorithms, we have developed the CALYPSO method for structure prediction, which has been widely used in fields as diverse as computational physics, chemistry, and materials science. In this review, we provide the basic theory of the CALYPSO method, placing particular emphasis on the principles of its various structure dealing methods. We also survey the current challenges faced by structure prediction methods and include an outlook on the future developments of CALYPSO in the conclusions.  相似文献   

10.
Lithium-excess cation disordered rock-salt materials have received much attention because of their high-capacity as a candidate for cathodes for lithium-ion batteries.The ultra-high specific capacity comes from the coordinated charge compensation of both transition metal and lattice oxygen.However,the oxygen redox at high voltage usually leads to irreversible oxygen release,thereby degrading the structure stability and electrochemical performance.Lithium-excess Li_(1.14)Ni_(0.57+0.5 x)Ti_(0.19-0.5 x)Mo_(0.10)O_(2-x)F_x(x=0,0.05,0.10,0.15,and 0.20) with different amounts of fluorine substitution were synthesized.Among them,Li_(1.14)Ni_(0.62 o)Ti_(0.140)Mo_(0.10)O_(1.85)F_(0.15)exhibits a lower capacity decline,better rate performance,and lower structure damage.The effects of fluorine substitution on the electrochemical property and structural stability were systematic studied by x-ray photoelectron spectroscopy and in situ XRD etc.Results show that fluorine substitution reduces the average valence of the anion,allowing a larger proportion of low-valent redox active transition metals,increasing the transition metal redox capacity,inhibiting irreversible oxygen release and side reaction.Fluorine substitution further improves the structural stability and suppresses lattice deformation of the material.  相似文献   

11.
不同皮秒非稳腔中的KTP晶体的腔内倍频效应   总被引:4,自引:0,他引:4  
吴逢铁  张文珍 《光学学报》1999,19(1):41-144
以KTP晶体作为Nd:YAP锁激光器的内腔倍频元件,在带非共振环(ARR)的对撞脉冲锁模(CPM)非稳腔虚共焦非稳腔中实现高效倍频转换,其倍频能量转换效率 53.4%和60.2%,测定了两种腔型的基波脉宽分别为8ps和18ps,二次谐波输出的最大能量起伏分别为10.6%和12.5%。理论分析了两种没腔型及其实验结果的特点。  相似文献   

12.
Yi-Bo Liang 《中国物理 B》2022,31(11):116302-116302
As the lightest two-dimensional material, monolayer borophene exhibits great potential as electrode materials, but it suffers from stability issues in the free-standing form. Here, the striped-borophene and graphene bilayer (sB/Gr) is found to be a high-performance anode material for rechargeable alkali-metal ion batteries. The first-principles results show that all the three alkali-metal atoms, Li, Na, and K, can be strongly adsorbed on sB/Gr with ultra-low diffusion barriers than that on pristine borophene/graphene, indicating good charge-discharge rates. Remarkably, high storage capacities are proposed for LIBs (1880 mA·h/g), NIBs (1648 mA·h/g), and KIBs (470 mA·h/g) with relatively small lattice change rate (<2.9%) in the process of alkali-metal atoms intercalations. These intriguing features of sB/Gr make it an excellent choice for batteries.  相似文献   

13.
吴逢铁  张文珍 《光子学报》2000,29(4):308-311,316
本文描述我们设计的带抗共振环(ARR)的对撞脉冲锁模(CPM)非稳腔Nd:YAP和Nd:YAG激光器,该激光腔结合了CPM腔脉宽窄、工作稳定和非稳腔输出能量高的特点,是一理想的高功率激光器同时选择了KTP、BBO和LBO等优良非线性晶体作为腔内倍频元件,实现高效倍频转换获得×10mJ和5GW/cm2的高能量和高功率绿光皮秒脉冲输出,倍频转换效率高达(50~70)%.  相似文献   

14.
The exploration of high‐energy and stable cathode materials is highly desirable and challenging for the development of advanced Zn‐based batteries. In this work, a facile pyrolysis method is reported to synthetize Ni3S2/carbon nanocomposite as high‐performance cathode by employing ion exchange resin as a precursor. Attributing to the abundant active sites and enhanced conductivity from well binding between Ni3S2 and carbon, a markedly high capacity of 234.3 mA h g?1 is obtained for this Ni3S2/carbon at a high current density of 6.9 A g?1. Moreover, a Zn‐based battery is demonstrated by using the Ni3S2/carbon as a cathode and Zn plate as an anode, which delivers a maximum power density of 58.6 kW kg?1, together with a peak energy density of 356 W h kg?1 and 93.7% capacity retention after 5000 charging–discharging cycles. This simple synthetic strategy to achieve robust Ni‐based composite electrodes may open up new opportunities to design other transition metal–based electrodes for energy storage applications.  相似文献   

15.
Sonoelectrochemistry is the study of the effects and applications of ultrasonic waves on electrochemical processes. The integration of ultrasound and electrochemistry offers many advantages: fast reaction rates, enhanced surface activation, and increased mass transport at an electrode. Significant progress has been made in advancing basic and applied aspects of sonoelectrochemical techniques, which are herein reviewed by addressing the development and applications of sonoelectrochemical processes in energy and environmental areas. This review examines the experimental procedures that are used in various sonoelectrochemical techniques generally used for the synthesis of energy related materials (e.g., fuel cell electrocatalysts and materials for hydrogen production) and for the degradation of various organic compounds/pollutants. The challenges that remain for the sonoelectrochemical production of energy materials, the degradation of organic pollutants, and their associated reaction pathway mechanism(s) are also discussed. This review also highlights the significant improvements made to date. The provided information in this review may be helpful to scientists working in the research areas of environmental remediation, energy exploitation and exploration, as well as synthetic process-oriented research.  相似文献   

16.
Two-dimensional (2D) materials, due to its excellent mechanical, unique electrical and optical properties, have become hot materials in the field of photocatalysis. Especially, 2D heterostructures can well inhibit the recombination of photogenerated electrons and holes in photocatalysis because of its special energy band structures and carrier transport characteristics, which are conducive to enhancing photoenergy conversion capacity and improving oxidation and reduction ability, so as to purify pollutants and store energy. In this minireview, we summarize recent theoretical progress in direct Z-scheme photocatalysis of 2D heterostructures, focusing on physical mechanism and improving catalytic efficiency. Current challenges and prospects for 2D direct Z-scheme photocatalysts are discussed as well.  相似文献   

17.
An energy conversion efficiency of 65.3% for second harmonic generation (SHG) from 1.06 μm to 0.53 μ m has been achieved by intracavity frequency doubling (IFD) in LiB 3O 5(LBO) crystal and a colliding pulse mode locked (CPM) Nd:YAG pulsed laser with a convex antiresonant ring (ARR) unstable resonator. For a fundamental wave with 20.2 mJ energy, 10 ps duration and a energy stability of 96.4%, a green output energy of 13.2 mJ was obtained. The energy conversion efficiency in IFD is much higher than that in extracavity frequency doubling (EFD) which is only 33.87%.  相似文献   

18.
Powdered layered double hydroxides (LDHs) have been widely studied due to their applications as catalysts, anionic exchangers or host materials for inorganic and/or organic molecules. Assembling nano-sized LDHs onto flat solid substrates forming thin films is an expanding area of research due to the prospects of novel applications as sensors, corrosion-resistant coatings, components in optical and magnetic devices.Continuous and adherent thin films were grown by laser techniques (pulsed laser deposition – PLD and matrix assisted pulsed laser evaporation – MAPLE) starting from targets of Mg–Al LDHs. The capacity of the grown thin films to retain a metal (Ni) from contaminated water has been also explored. The thin films were immersed in an Ni(NO3)2 aqueous solutions with Ni concentrations of 10?3% (w/w) (1 g/L) and 10?4% (w/w) (0.1 g/L), respectively. X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) combined with energy dispersive X-ray analysis (EDX) were the techniques used to characterize the prepared materials.  相似文献   

19.
Intracavityfrequencydoublingeffectsofpassivelymode-lockedNd:YAPpulsedlaserintwodifferentunstableresonatorsWUFengtie(Departmen...  相似文献   

20.
研究了基于石墨烯电极的蒽醌分子器件的开关特性.分别选取了锯齿型和扶手椅型的石墨烯纳米带作为电极,考虑蒽醌基团在氧化还原反应下的两种构型,即氢醌(HQ)分子和蒽醌(AQ)分子,构建了双电极分子结,讨论了氧化还原反应和不同的电极结构对蒽醌分子器件开关特性的影响.研究发现,无论是锯齿型石墨烯电极还是扶手椅型石墨烯电极,HQ构型的电流都明显大于AQ构型的电流,即在氧化还原反应下蒽醌分子呈现出显著的开关特性.同时,当选用锯齿型石墨烯电极时其开关比最高能达到3125,选用扶手椅型石墨烯电极时开关比最高能达到1538.此外,当HQ构型以扶手椅型石墨烯为电极时,在0.7-0.75 V之间表现出明显的负微分电阻效应.因此该系统在未来分子开关器件领域具有潜在的应用价值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号