首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
刘康  李剑  朱建荣  张春梅  王琴 《中国物理 B》2017,26(12):120302-120302
Reference-frame-independent quantum key distribution(RFI QKD) can generate secret keys without the alignment of reference frames, which is very robust in real-life implementations of QKD systems. However, the performance of decoystate RFI QKD with both source errors and statistical fluctuations is still missing until now. In this paper, we investigate the performance of decoy-state RFI QKD in practical scenarios with two kinds of light sources, the heralded single photon source(HSPS) and the weak coherent source(WCS), and also give clear comparison results of decoy-state RFI QKD with WCS and HSPS. Simulation results show that the secret key rates of decoy-state RFI QKD with WCS are higher than those with HSPS in short distance range, but the secret key rates of RFI QKD with HSPS outperform those with WCS in long distance range.  相似文献   

2.
The unconditional security of quantum key distribution(QKD) can be guaranteed by the nature of quantum physics.Compared with the traditional two-dimensional BB84 QKD protocol, high-dimensional quantum key distribution(HDQKD) can be applied to generate much more secret key.Nonetheless, practical imperfections in realistic systems can be exploited by the third party to eavesdrop the secret key.The practical beam splitter has a correlation with wavelength,where different wavelengths have different coupling ratios.Using this property, we propose a wavelength-dependent attack towards time-bin high-dimensional QKD system.What is more, we demonstrate that this attacking protocol can be applied to arbitrary d-dimensional QKD system, and higher-dimensional QKD system is more vulnerable to this attacking strategy.  相似文献   

3.
The security properties of quantum key distribution(QKD) system are analyzed with the practical light source using decoy state method. The secure key rate with the change of transmission distance is computed under the condition of ideal system, infinite light source system, untrusted light source and passive system. The influence of the fluctuation of transmission rate on the security characteristics of the system is discussed. Our numerical simulation results offer a useful reference for the practical QKD experiment.  相似文献   

4.
The twin-field quantum key distribution (TF-QKD) protocol and its variations have been proposed to overcome the linear Pirandola–Laurenza–Ottaviani–Banchi (PLOB) bound. One variation called phase-matching QKD (PM-QKD) protocol employs discrete phase randomization and the phase post-compensation technique to improve the key rate quadratically. However, the discrete phase randomization opens a loophole to threaten the actual security. In this paper, we first introduce the unambiguous state discrimination (USD) measurement and the photon-number-splitting (PNS) attack against PM-QKD with imperfect phase randomization. Then, we prove the rigorous security of decoy state PM-QKD with discrete phase randomization. Simulation results show that, considering the intrinsic bit error rate and sifting factor, there is an optimal discrete phase randomization value to guarantee security and performance. Furthermore, as the number of discrete phase randomization increases, the key rate of adopting vacuum and one decoy state approaches infinite decoy states, the key rate between discrete phase randomization and continuous phase randomization is almost the same.  相似文献   

5.
We have experimentally demonstrated a decoy-state quantum key distribution scheme (QKD) with a heralded single-photon source based on parametric down-conversion. We used a one-way Bennett-Brassard 1984 protocol with a four states and one-detector phase-coding scheme, which is immune to recently proposed time-shift attacks, photon-number splitting attacks, and can also be proven to be secure against Trojan horse attacks and any other standard individual or coherent attacks. In principle, the setup can tolerate the highest losses or it can give the highest secure key generation rate under fixed losses compared with other practical schemes. This makes it a quite promising candidate for future quantum key distribution systems.  相似文献   

6.
Decoy state method quantum key distribution (QKD) is one of the promisingpractical solutions for BB84 QKD with coherent light pulses. The number ofdata-set size in practical QKD protocol is always finite, which will causestatistical fluctuations. In this paper, we apply absolutely statisticalfluctuation to amend the yield and error rate of the quantum state. Therelationship between exchanged number of quantum signals and key generation rate is analyzed in our simulation, which offers a useful reference for experiment.  相似文献   

7.
现在诱惑态已被证明是一种可以大大提高量子密钥分发安全性能的现实可行的方法.由于考虑到现实应用中激光器在调制过程中的消光比不能做到100%,以及激光器固有的自发辐射因而使得制备真空态并不是一件容易的事情. 因此本文将对理想情况下准单光子光源量子密钥分发系统应用中的诱惑态结论作了补充和扩展,提出了两个弱光强态的诱惑态方案和一个弱光强诱惑态方案.最后,将“双探测器”的理论应用在准单光子源(HSPS)光源系统中,使系统的安全传输距离可达到2215km,比使用普通探测器的系统增加了约50km. 关键词: 量子密钥分发 诱惑态 HSPS光源 双探测器  相似文献   

8.
焦荣珍  丁天  王文集  马海强 《物理学报》2013,62(18):180302-180302
通过比较被动系统与主动系统的特性, 得出可信光源、不可信光源主动系统和不可信光源被动系统的密钥生成率随距离的变化关系; 采用标准误差分析法, 得到相应变量的偏离量; 基于诱骗态方案分析不可信光源被动系统暗计数率和光源强度参数波动对系统安全特性的影响, 得出在1310 nm 和1550 nm通信窗口下, 系统最大安全通信距离范围分别为[73.2 km, 96.5 km] 和[104.5 km, 137.9 km]. 这可为实用量子通信实验提供重要的理论参数. 关键词: 量子密钥分配 不可信光源 被动系统 统计波动  相似文献   

9.
Similar to device-independent quantum key distribution(DI-QKD), semi-device-independent quantum key distribution(SDI-QKD) provides secure key distribution without any assumptions about the internal workings of the QKD devices.The only assumption is that the dimension of the Hilbert space is bounded. But SDI-QKD can be implemented in a oneway prepare-and-measure configuration without entanglement compared with DI-QKD. We propose a practical SDI-QKD protocol with four preparation states and three measurement bases by considering the maximal violation of dimension witnesses and specific processes of a QKD protocol. Moreover, we prove the security of the SDI-QKD protocol against collective attacks based on the min-entropy and dimension witnesses. We also show a comparison of the secret key rate between the SDI-QKD protocol and the standard QKD.  相似文献   

10.
Recently the performance of the quantum key distribution (QKD) is substantially improved by the decoy state method and the non-orthogonal encoding protocol, separately. In this paper, a practical non-orthogonal decoy state protocol with a heralded single photon source (HSPS) for QKD is presented. The protocol is based on 4 states with different intensities. i.e. one signal state and three decoy states. The signal state is for generating keys; the decoy states are for detecting the eavesdropping and estimating the fraction of single-photon and two-photon pulses. We have discussed three cases of this protocol, i.e. the general case, the optimal case and the special case. Moreover, the final key rate over transmission distance is simulated. For the low dark count of the HSPS and the utilization of the two-photon pulses, our protocol has a higher key rate and a longer transmission distance than any other decoy state protocol.  相似文献   

11.
Twin-field quantum key distribution (TF-QKD) has attracted considerable attention and developed rapidly due to its ability to surpass the fundamental rate-distance limit of QKD. However, the device imperfections may compromise its practical implementations. The goal of this paper is to make it robust against the state preparation flaws (SPFs) and side channels at the light source. We adopt the sending or not-sending (SNS) TF-QKD protocol to accommodate the SPFs and multiple optical modes in the emitted states. We analyze that the flaws of the phase modulation can be overcome by regarding the deviation of the phase as phase noise and eliminating it with the post-selection of phase. To overcome the side channels, we extend the generalized loss-tolerant (GLT) method to the four-intensity decoy-state SNS protocol. Remarkably, by decomposing of the two-mode single-photon states, the phase error rate can be estimated with only four parameters. The practical security of the SNS protocol with flawed and leaky source can be guaranteed. Our results might constitute a crucial step towards guaranteeing the practical implementation of the SNS protocol.  相似文献   

12.
T. Honjo  K. Inoue 《Optics Communications》2011,284(24):5856-5859
Differential-phase-shift (DPS) quantum key distribution (QKD) is one of the QKD protocols, featuring simplicity for practical implementation. It uses a coherent pulse train whose phase should be stable at least within the pulse interval. This paper quantitatively investigates the phase stability required for DPS-QKD systems. The phase stability is characterized by the spectral linewidth of the light source. A theoretical model and experiments are presented, the results of which indicate that the linewidth should be, for example, less than 0.35% of the free-spectral-range of an asymmetric Mach-Zehnder interferometer in a receiver to achieve quantum bit error rate of less than 0.5% due to linewidth broadening of the light source.  相似文献   

13.
14.
实际量子密钥分发系统使用的单光子源主要是由弱激光脉冲经衰减得到。它不是理想单光子源而是服从泊松分布的准单光子源。每个非空光脉冲中包含多光子的概率不为零,强大的窃听者可利用此获得一些关于最终密钥的信息。因此,有必要研究实际QKD系统的安全性。采用对多光子进行分束窃听、单光子最佳攻击相结合的方案,用Shannon信息理论分析了基于弱相干光的实际QKD系统的安全性。研究结果表明实际QKD系统对于分束窃听和最佳攻击是安全的,并给出合法通信双方在该攻击方案下所容忍的误码率上限。  相似文献   

15.
In general, quantum key distribution (QKD) has been proved unconditionally secure for perfect devices due to quantum uncertainty principle, quantum noneloning theorem and quantum nondividing principle which means that a quantum cannot be divided further. However, the practical optical and electrical devices used in the system are imperfect, which can be exploited by the eavesdropper to partially or totally spy the secret key between the legitimate parties. In this article, we first briefly review the recent work on quantum hacking on some experimental QKD systems with respect to imperfect devices carried out internationally, then we will present our recent hacking works in details, including passive faraday mirror attack, partially random phase attack, wavelength-selected photon-number-splitting attack, frequency shift attack, and single-photon-detector attack. Those quantum attack reminds people to improve the security existed in practical QKD systems due to imperfect devices by simply adding countermeasure or adopting a totally different protocol such as measurement-device independent protocol to avoid quantum hacking on the imperfection of measurement devices [Lo, et al., Phys. Rev. Lett., 2012, 108: 130503].  相似文献   

16.
The number of transmitted signals in practical quantum key distribution (QKD) protocol is always finite. We discuss the security of decoy states QKD protocol with finite resources by considering the statistical fluctuation for the yield and error rate of the quantum state in different sources of pulses (signal sources and decoy sources). The number of exchanged quantum signals vs positive key generation rate is given with experiment results.  相似文献   

17.
光子数分束攻击对星地量子密钥分配系统安全的影响   总被引:2,自引:1,他引:1  
由于仪器设备性能的不完美和信道传输损耗的存在,光子数分束(PNS)攻击对采用弱相干脉冲(WCP)光源的量子密钥分配(QKD)系统的安全性构成重大威胁.以基于WCP光源的星地QKD系统为研究对象,推导了在PNS攻击者采用最佳窃听策略进行窃听时,保证密钥绝对安全的最大天顶角和可采用的平均光子数之间的关系.理论分析和计算结果表明,星地QKD系统的最大安全传输天顶角和可使用的平均光子数等重要系统参数的取值上限均受PNS攻击的限制,最终系统的密钥交换速率和系统容量受到限制.对星地QKD系统的传输容量来说,天顶角和平均光子数是一对矛盾的影响因素.提供了一种对实际星地QKD系统的天顶角和平均光子数参数进行估算的方法.  相似文献   

18.
诱惑态量子密钥分配系统中统计涨落的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
焦荣珍  唐少杰  张弨 《物理学报》2012,61(5):50302-050302
针对实用的量子密钥分配(QKD)系统是基于强衰减的弱激光脉冲作为单光子源, 光子数分束攻击极大限制了通信双方在非理想条件下QKD的传输距离和密钥生成率,采用大数定律对诱惑态协议中单光子的计数率、单光子增益和误码率分别进行统计涨落分析, 利用双诱惑态比较了1310 nm和1550 nm条件下,编码脉冲的长度为(N = 106-N = 1012)实际QKD协议中密钥的生成率与安全传输距离之间的关系、安全传输距离随编码长度的变化的关系, 得出脉冲编码长度增大到N = 1012时,密钥的最大安全传输距离为135 km.  相似文献   

19.
焦荣珍  张弨  马海强 《物理学报》2011,60(11):110303-110303
文章通过比较主动诱惑态和被动诱惑态的特性,假设所有可测量都围绕渐近值上下波动,得到相应变量的偏离量,采用标准误差法分析实用光源条件下,有限脉冲数编码对密钥生成率和传输距离的影响,比较了主动诱惑态、被动诱惑态 、无限长时间极限情况和不同量子效率条件下密钥生成率随传输距离的变化关系,为实用的量子密钥分配实验提供了重要的理论参数. 关键词: 诱惑态 量子密钥分配 统计涨落  相似文献   

20.
陈彦  胡渝 《光学学报》2007,27(1):21-25
自由空间量子密钥分布系统是全球性量子保密通信的关键组成部分之一。因此研究湍流大气信道对量子密钥分布系统性能的影响就非常重要。使用光束近场传播和统计分析的方法定量分析了湍流大气信道对基于BB84协议的自由空间量子密钥分布系统的误码率的影响。数值计算结果表明,大气衰减系数超过-3dB/km时,大气衰减对量子密钥分布系统的误码率影响很大;在大气传输因子小于0.5的区域,系统误码率比无湍流影响时的系统误码率高出一个数量级。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号