首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
A pedagogical introduction to the analytical treatment of the collective behavior of active (self-propelled) Brownian particles with short-ranged interactions is presented. The treatment is based on established concepts from the theories of simple liquids and pattern formation. It is shown how microscopic clustering due to self-blocking of directed particle motion leads to macroscopic phase separation described by effective equilibrium concepts holding on length scales larger than the persistence length of the direction motion.  相似文献   

2.
We propose a simple microscopic model for active nematic particles similar in spirit to the Vicsek model for self-propelled polar particles. In two dimensions, we show that this model exhibits a Kosterlitz-Thouless-like transition to quasi-long-range orientational order and that in this nonequilibrium context, the ordered phase is characterized by giant density fluctuations, in agreement with the predictions of Ramaswamy et al.  相似文献   

3.
《中国物理 B》2021,30(10):100510-100510
Collective motion of active particles with polar alignment is investigated on a sphere. We discussed the factors that affect particle swarm motion and define an order parameter that can show the degree of particle swarm motion. In the model, we added a polar alignment strength, along with Gaussian curvature, affecting particles swarm motion. We find that when the force exceeds a certain limit, the order parameter will decrease with the increase of the force. Combined with our definition of order parameter and observation of the model, the reason is that particles begin to move side by side under the influence of polar forces. In addition, the effects of velocity, rotational diffusion coefficient, and packing fraction on particle swarm motion are discussed. It is found that the rotational diffusion coefficient and the packing fraction have a great influence on the clustering motion of particles, while the velocity has little influence on the clustering motion of particles.  相似文献   

4.
An important characteristic of flocks of birds, schools of fish, and many similar assemblies of self-propelled particles is the emergence of states of collective order in which the particles move in the same direction. When noise is added into the system, the onset of such collective order occurs through a dynamical phase transition controlled by the noise intensity. While originally thought to be continuous, the phase transition has been claimed to be discontinuous on the basis of recently reported numerical evidence. We address this issue by analyzing two representative network models closely related to systems of self-propelled particles. We present analytical as well as numerical results showing that the nature of the phase transition depends crucially on the way in which noise is introduced into the system.  相似文献   

5.
The effects of colored noise on self-propelled particles in a two-dimensional potential are investigated. The resonance phenomenon was found as the the average velocity has a maximum value with increasing x direction noise intensity. The average velocity takes its maximal value as the parameters (the y direction noise intensity, the self-propelled angle noise intensity, and so on) take suitable values. The y direction noise and the self-propelled angle noise have great effects on the x direction particles transport. The y direction noise and the self-propelled angle noise cannot induce x direction particles transport in the absence of x direction noise. The ratchet effect should disappear when there is no coupling between the x direction potential and the y direction potential.  相似文献   

6.
华昀峰  章林溪 《物理学报》2017,66(19):190701-190701
在许多纳米复合材料体系中熵力(entropy force)是普遍存在的,但由于熵力的存在会导致纳米颗粒的凝聚从而降低其许多性能,因此在大多数情况下熵力的存在对体系并无益处,所以研究如何减小熵力对体系的影响是非常重要的.不带角速度的自驱动粒子在熵力作用下会集聚在纳米颗粒(或者纳米棒)周围,这会对纳米颗粒(或者纳米棒)产生很大的相互作用力.对于纳米颗粒,在不带角速度的自驱动粒子体系中存在着非常大的排斥力.而对于纳米棒,由于纳米棒内外的不对称性,使得两个纳米棒之间会产生吸引-排斥转变,同时这个吸引-排斥转变与纳米棒之间的距离有关.当自驱动粒子加上一个自转角速度ω之后,熵力的作用就大大减弱,纳米颗粒不再集聚.研究结果有助于对非平衡态下纳米颗粒(或纳米棒)之间熵相互作用力的认识.  相似文献   

7.
Recently, the steady sedimentation profile of a dilute suspension of chemically powered colloids was studied experimentally [J. Palacci et al., Phys. Rev. Lett. 105, 088304 (2010)]. It was found that the sedimentation length increases quadratically with the swimming speed of the active Brownian particles. Here we investigate theoretically the sedimentation of self-propelled particles undergoing translational and rotational diffusion. We find that the measured increase of the sedimentation length is coupled to a partial alignment of the suspension with the mean swimming direction oriented against the gravitational field. We suggest realistic parameter values to observe this polar order. Furthermore, we find that the dynamics of the active suspension can be derived from a generalized free energy functional.  相似文献   

8.
仲颖  施夏清 《物理学报》2020,(8):112-119
在生物体系的活性系统中,杆状粒子在弹性半柔性边界中的受限行为极为常见.本文研究了二维情况下,自驱动杆状粒子受限在半柔性弹性环中的集体行为.改变系统的粒子数及噪声强度,系统显示明显的自驱吸附有序态、无序态及中间的过渡态.通过表征弹性环内部粒子的径向极性大小和空间分布的非球度性对这些状态进行了刻画.进一步对弹性环中心附近粒子密度的分析,发现环中心气态粒子分布存在一个与边界高密度区域共存的饱和平台,出现类似吸附转变的粒子分布.在过渡区间,体系内存在较大的涨落会导致弹性环出现异常形变.非对称的粒子分布对弹性环整体的迁移具有重要贡献,系统在过渡区间能获得相对较强的定向迁移.  相似文献   

9.
Dragonflies are four-winged insects that have the ability to control aerodynamic performance by modulating the phase lag (phi) between forewings and hindwings. We film the wing motion of a tethered dragonfly and compute the aerodynamic force and power as a function of the phase. We find that the out-of-phase motion as seen in steady hovering uses nearly minimal power to generate the required force to balance the weight, and the in-phase motion seen in takeoffs provides an additional force to accelerate. We explain the main hydrodynamic interaction that causes this phase dependence.  相似文献   

10.
Stochastic resonance (SR) is numerically analyzed by the method of the stochastic energetics that enable us to analyze the energetics of non-equilibrium processes described by the Langevin equations. The work done by the external agent which drives the potential to fluctuate periodically is shown to be a good quantitative measure of SR. If the phase lag of the inter-well resonant motion before the periodic force is investigated, the good measure of SR can be devised by extracting the inter-well resonant motion. Thus, we numerically investigate the phase lag of the Brownian motion. The value of phase lag at the optimal noise intensity is found to depend on the frequency of the periodic force.  相似文献   

11.
We report a novel phase separation dynamics, mediated by self-propelled motion of the nucleated drops, in a mixture of a nematogen and an isotropic dopant. We show that surface flow, induced by the gradient in the concentration of the dopant expelled by the growing drops, provides the driving force for the propulsion of nematic droplets. While the liquid crystal-isotropic transition is used here to demonstrate the phenomenon, self-propulsion should be observable in many other systems in which the dynamics of a conserved order parameter is coupled to a nonconserved order parameter.  相似文献   

12.
Computer simulations were performed to study the dense mixtures of passive particles and active particles in two dimensions. Two systems with different kinds of passive particles(e.g., spherical particles and rod-like particles) were considered. At small active forces, the high-density and low-density regions emerge in both systems, indicating a phase separation. At higher active forces, the systems return to a homogeneous state with large fluctuation of particle area in contrast with the thermo-equilibrium state. Structurally, the rod-like particles accumulate loosely due to the shape anisotropy compared with the spherical particles at the high-density region. Moreover, there exists a positive correlation between Voronoi area and velocity of the particles. Additionally, a small number of active particles capably give rise to super-diffusion of passive particles in both systems when the self-propelled force is turned on.  相似文献   

13.
14.
基于分形理论,建立驻波声场中颗粒团动力学模型,对颗粒团的夹带系数、相位滞后和漂移系数进行数值预测。将预测结果和实验进行对比,二者吻合良好。在此基础上,研究了组成颗粒团的原生颗粒半径、数目以及排列情况对于颗粒团运动特性参数的影响。结果表明,对于由两个原生颗粒组成的颗粒团,原生颗粒半径越接近,颗粒团与等体积球形颗粒运动特性的差异越大;在分形维数一定时,随着原生颗粒数目的增多,颗粒团的夹带系数减小,相位滞后增加,漂移系数先增大后减小,颗粒团与等体积球形颗粒的动力学行为存在显著差异;原生颗粒排列趋于致密时,颗粒团的夹带系数增大,相位滞后减小,漂移系数发生单调变化,与等体积球形颗粒运动特性的差异缩小。  相似文献   

15.
We study a simple swarming model on a two-dimensional lattice where the self-propelled particles exhibit a tendency to align ferromagnetically. Volume exclusion effects are present: particles can only hop to a neighboring node if the node is empty. Here we show that such effects lead to a surprisingly rich variety of self-organized spatial patterns. As particles exhibit an increasingly higher tendency to align to neighbors, they first self-segregate into disordered particle aggregates. Aggregates turn into traffic jams. Traffic jams evolve toward gliders, triangular high density regions that migrate in a well-defined direction. Maximum order is achieved by the formation of elongated high density regions--bands--that transverse the entire system. Numerical evidence suggests that below the percolation density the phase transition associated with orientational order is of first order, while at full occupancy it is of second order.  相似文献   

16.
In this article, we describe the instability of a contact line under nonequilibrium conditions mainly based on the results of our recent studies. Two experimental examples are presented: the self-propelled motion of a liquid droplet and spontaneous dynamic pattern formation. For the self-propelled motion of a droplet, we introduce an experiment in which a droplet of aniline sitting on an aqueous layer moves spontaneously at an air-water interface. The spontaneous symmetry breaking of Marangoni-driven spreading causes regular motion. In a circular Petri dish, the droplet exhibits either beeline motion or circular motion. On the other hand, we show the emergence of a dynamic labyrinthine pattern caused by dewetting of a metastable thin film from the air-water interface. The contact line between the organic phase and the aqueous phase forms a unique spatio-temporal pattern characterized as a dynamic labyrinth. Motion of the contact line is controlled by diffusion processes. We propose a theoretical model to interpret essential aspects of the observed dynamic behavior.  相似文献   

17.
The nonintegrable Hamiltonian dynamics of particles placed in a symmetric, spatially periodic potential and subjected to a periodically varying field is explored. Such systems can exhibit a rich diversity of unusual transport features. In particular, depending on the setting of the initial phase of the drive, the possibility of a giant transient directed transport in a symmetric, space-periodic potential when driven with an adiabatically varying field arises. Here, we study the escape scenario and corresponding mean escape times of particles from a trapping region with the subsequent generation of a transient directed flow of an ensemble of particles. It is shown that for adiabatically slow inclination modulations the unidirectional flow proceeds over giant distances. The direction of escape and, hence, of the flow is entirely governed whether the periodic force, modulating the inclination of the potential, starts out initially positive or negative. In the phase space, this transient directed flow is associated with a long-lasting motion taking place within ballistic channels contained in the non-uniform chaotic layer. We demonstrate that for adiabatic modulations all escaping particles move ballistically into the same direction, leading to a giant directed current.  相似文献   

18.
We study the onset of collective motion, with and without cohesion, of groups of noisy self-propelled particles interacting locally. We find that this phase transition, in two space dimensions, is always discontinuous, including for the minimal model of Vicsek et al. [Phys. Rev. Lett. 75, 1226 (1995)]] for which a nontrivial critical point was previously advocated. We also show that cohesion is always lost near onset, as a result of the interplay of density, velocity, and shape fluctuations.  相似文献   

19.
Using experiments with anisotropic vibrated rods and quasi-2D numerical simulations, we show that shape plays an important role in the collective dynamics of self-propelled (SP) particles. We demonstrate that SP rods exhibit local ordering, aggregation at the side walls, and clustering absent in round SP particles. Furthermore, we find that at sufficiently strong excitation SP rods engage in a persistent swirling motion in which the velocity is strongly correlated with particle orientation.  相似文献   

20.
The standard Vicsek model (SVM) is a minimal non-equilibrium model of self-propelled particles that appears to capture the essential ingredients of critical flocking phenomena. In the SVM, particles tend to align with each other and form ordered flocks of collective motion; however, perturbations controlled by a noise term lead to a noise-driven continuous order–disorder phase transition. In this work, we extend the SVM by introducing a parameter αα that allows particles to be individualistic instead of gregarious, i.e. to choose a direction of motion independently of their neighbors. By focusing on the small-noise regime, we show that a relatively small probability of individualistic motion (around 10%10%) is sufficient to drive the system from a Vicsek-like ordered phase to a disordered phase. Despite the fact that the αα-extended model preserves the O(n)O(n) symmetry and the interaction range, as well as the dimensionality of the underlying SVM, this novel phase transition is found to be discontinuous (first order), an intriguing manifestation of the richness of the non-equilibrium flocking/swarming phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号