首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Inconsistencies exist in literature regarding the effect of prior austenite grain size (PAGS) on the extent and kinetics of bainite transformation. Attempts have been made in the present work to address these issues in a low-alloy carbide-free bainitic steel using dilatometry, over a range of PAGS. The bainite transformation kinetics in the above-mentioned conditions have been analysed quantitatively using established kinetic model to extract information related to the transformation mechanisms in such conditions. Greater obstruction from grain boundaries in fine-grained austenite restricts sheaves of bainite to develop completely and thereby reduces the volume fraction of bainite in comparison with coarse-grained austenite. Initial nucleation rate of bainite transformation increases with decreasing PAGS due to an increase in the nucleation site density. However, the maximum nucleation rate decreases consistently with decreasing PAGS due to gradual reduction in the autocatalytic factor.  相似文献   

2.
ABSTRACT

Kinetics of multiply ferrite/bainite phase transformation of HSLA steels is investigated by experiments and cellular automaton (CA) simulation. Peak-differentiation method to elucidate the sequential ferrite and bainite phase transformation individually, which is verified by the CA simulation. Such CA modelling executed using classic JMAK theory, but also gives an insight of microstructure evolution of the multi-phase transformation routine on different cooling rate. From that, it enables classic JMAK modelling to capture the detached phase transformation with different growth models and interface-migration mechanisms. Also, we find that the final phase constitution is sensitive to the cooling rate. With increasing the cooling rate, bainite sheaves nucleated at prior austenite boundaries and ferrite/austenite interfaces are significantly facilitated, which seriously inhibits the growth of prior ferrites. The scenario can be interpreted by the CA simulation and the influence of the cooling rate on sequential multi-phase transformation can be also obtained.  相似文献   

3.
4.
The flow behaviour of the constitutive phases in multiphase steels, possibly exhibiting a mechanically-induced phase transformation (TRIP effect), is investigated using neutron diffraction conducted during uniaxial tensile loading. The BCC and FCC lattice strains of several specimens containing different amounts ferrite, bainite, martensite and metastable retained austenite are measured along elastic and plastic deformation. The validity of the measurements, as well as the strengthening resulting from the TRIP effect, are evaluated on the basis of overall mechanical equilibrium.  相似文献   

5.
ABSTRACT

This paper concerns the propagation of Rayleigh waves in compressible and incompressible orthotropic elastic half-spaces. The main aim of the paper is to derive formulas for the H/V ratio (ellipticity) of Rayleigh waves. First, the expression of the H/V ratio in terms of the Rayleigh wave velocity for compressible orthotropic elastic half-spaces is derived using the surface impedance matrix. From this expression and the secular equation of Rayleigh waves, the equation for the H/V ratio is obtained. It is a cubic equation. Employing the theory of cubic equations, the formula for the H/V ratio for compressible orthotropic elastic half-spaces has been derived. The H/V ratio formula for incompressible orthotropic elastic half-spaces has been obtained using the incompressible limit method. Since the H/V ratio of Rayleigh waves is a good tool for nondestructively evaluating mechanical properties of structures before and during loading, the obtained formulas will be very significant in practical applications.  相似文献   

6.
Abstract

Due to its renewability and biodegradability, biopolymers have developed interest in order to substitute oil-derived plastics. In particular, polylactic acid (PLA) is a promising biopolymer in terms of mechanical and biodegradable properties that is used for different applications. Nevertheless, PLA has some disadvantages like brittleness and processing instability. In order to overcome these drawbacks, it has been blended with natural fibers, leading to a fully biodegradable biocomposite material with enhanced properties. However, blending a hydrophobic biopolymer with hydrophilic fibers leads to poor interfacial adhesion producing interfacial voids, cavities and defects and consequently low performance properties. In this sense, this article reviews different strategies of biopolymer functionalization to improve compatibility in biocomposite materials. First, the effect of different parameters on biopolymers functionalization via melt and reactive extrusion processes is discussed. Finally, coupling efficiency of functionalized biopolymers is analyzed in terms of mechanical and thermal properties.  相似文献   

7.
The best combinations of mechanical properties (yield stress and fracture toughness) of M250 maraging steel is obtained through short-term thermal aging (3–10 h) at 755 K. This is attributed to the microstructure containing precipitation of intermetallic phases in austenite-free low-carbon martensite matrix. Over-aged microstructure, containing reverted austenite degrades the mechanical properties drastically. Hence, it necessitates identification of a suitable non-destructive evaluation (NDE) technique for detecting any reverted austenite unambiguously during aging. The influence of aging on microstructure, room temperature hardness and non-destructive magnetic parameters such as coercivity (Hc), saturation magnetization (Ms) and magnetic Barkhausen emission (MBE) RMS peak voltage is studied in order to derive correlations between these parameters in aged M250 maraging steel. Hardness was found to increase with precipitation of intermetallics during initial aging and decrease at longer durations due to austenite reversion. Among the different magnetic parameters studied, MBE RMS peak voltage was found to be very sensitive to austenite reversion (non-magnetic phase) as they decreased drastically up on initiation of austenite reversion. Hence, this parameter can be effectively utilized to detect and quantify the reverted austenite in maraging steel specimen. The present study clearly indicates that the combination of MBE RMS peak voltage and hardness can be used for unambiguous characterization of microstructural features of technological and practical importance (3–10 h of aging duration at 755 K) in M250 grade maraging steel.  相似文献   

8.
Abstract

Change of the fine structure of high nitrogen austenite steels deformed under high hydrostatic pressure was studied by transmission electron microscopy. The increase of pressure and deformation degree results in higher twinning intensity and consequently in substantial hardening of the studied steels. The strain hardening curves were analyzed and the regions were determined where high nitrogen steels could be deformed without macroscopic destruction depending on the deformation degree under preliminary hydroextrusion.  相似文献   

9.
Arpan Das 《哲学杂志》2015,95(20):2210-2227
The phenomenological theory of martensitic transformation is well understood that the displacive phase transformations are mainly influenced by the externally applied stress. Martensitic transformation occurs with 24 possible Kurdjomov-Sachs (K-S) variants, where each variant shows a distinct lattice orientation. The elegant transformation texture model of Kundu and Bhadeshia for crystallographic variant selection of martensite in metastable austenite at various stress/strain levels has been assessed in this present research. The corresponding interaction energies have also been evaluated. Encouraging correlation between model prediction and experimental data generation for martensite pole figures at many deformed austenite grains has been observed at different stress/strain levels. It has been investigated that the mechanical driving force alone is able to explain the observed martensite microtextures at all stress/strain levels under uniaxial tensile deformation of metastable austenite under low temperature at a slow strain rate. The present investigation also proves that the Patel and Cohen’s classical theory can be utilized to predict the crystallographic variant selection, if it is correctly used along with the phenomenological theory of martensite crystallography.  相似文献   

10.
Development and properties of nanostructured thermal spray coatings   总被引:8,自引:0,他引:8  
Nanostructured thermal spray coatings have been intensively studied because of their potential in a wide variety of industrial applications. In the present paper, current development status of nanostructured thermal spray coatings is presented, mainly based on the results of the authors. In the nanostructured WC–Co wear-resistant coatings, the influence of feedstock characteristics on the coating properties was discussed to suggest the desirable morphology of feedstock for thermal spraying. For the nanostructured Cr2O3 based solid-lubricant coatings, the advanced feedstock has been developed in order to solve the inhomogeneity problem of the conventional coatings. Various properties of the nanostructured coatings were evaluated and compared with those of the conventional counterparts. These results clearly demonstrate that the significant improvement in coating performance can be achieved by utilizing proper nanostructured coatings.  相似文献   

11.
Arpan Das 《哲学杂志》2013,93(11):867-916
Abstract

Grain boundary engineering has revealed significant enhancement of material properties by modifying the populations and connectivity of different types of grain boundaries within the polycrystals. The character and connectivity of grain boundaries in polycrystalline microstructures control the corrosion and mechanical behaviour of materials. A comprehensive review of the previous researches has been carried out to understand this philosophy. Present research thoroughly explores the effect of total strain amplitude on phase transformation, fatigue fracture features, grain size, annealing twinning, different grain connectivity and grain boundary network after strain controlled low cycle fatigue deformation of austenitic stainless steel under ambient temperature. Electron backscatter diffraction technique has been used extensively to investigate the grain boundary characteristics and morphologies. The nominal variation of strain amplitude through cyclic plastic deformation is quantitatively demonstrated completely in connection with the grain boundary microstructure and fractographic features to reveal the mechanism of fatigue fracture of polycrystalline austenite. The extent of boundary modifications has been found to be a function of the number of applied loading cycles and strain amplitudes. It is also investigated that cyclic plasticity induced martensitic transformation strongly influences grain boundary characteristics and modifications of the material’s microstructure/microtexture as a function of strain amplitudes. The experimental results presented here suggest a path to grain boundary engineering during fatigue fracture of austenite polycrystals.  相似文献   

12.

Non isothermal studies were carried out using thermogravimetry (TG) and differential thermogravimetry (DTG) to obtain the activation energy of decomposition for chlorinated polyvinyl chloride (CPVC) before and after exposure to gamma doses at levels between 5.0 and 50.0 KGy. Thermal gravitational analysis (TGA) indicated that the CPVC polymer decomposes in one main breakdown stage and a decrease in activation energies was observed followed by an increase on increasing the gamma dose. The variation of melting temperatures with the gamma dose has been determined using differential thermal analysis (DTA). Also, mechanical and structural property studies were performed on all irradiated and non-irradiated CPVC samples using stress-strain relations and X-ray diffraction. The results indicated that the exposure to gamma doses at levels between 27.5 and 50 KGy leads to further enhancement of the thermal stability, tensile strength and isotropic character of the polymer samples due to the crosslinking phenomenon. This suggests that gamma radiation could be a suitable technique for producing a plastic material with enhanced properties that can be suitable for high temperature applications and might be a suitable candidate for dosimetric applications.  相似文献   

13.
Abstract

The austenite microstructure evolution and softening processes have been studied in a 23Cr–6Ni–3Mo duplex stainless steel, comprising equal fractions of austenite and ferrite, deformed in uniaxial compression at 1000 °C using strain rates of 0.1 and 10 s?1. The texture and microstructure evolution within austenite was similar in character for both the strain rate used. The observed large-scale subdivision of austenite grains/islands into complex-shaped deformation bands, typically separated by relatively wide transition regions, has been attributed to the complex strain fields within this phase. Organised, self-screening microband arrays were locally present within austenite and displayed a crystallographic character for a wide range of austenite orientations. The microband boundaries were aligned with the traces of {1?1?1} slip planes containing slip systems having high, although not necessarily the highest possible, Schmid factors. The slightly lower mean intercept length and higher mean misorientation obtained for the sub-boundaries at the higher strain rate can be ascribed to the expected more restricted dynamic recovery processes compared to the low strain rate case. Dynamic recrystallisation within austenite was extremely limited and mainly occurred via the strain-induced migration of the distorted original twin boundaries, followed by the formation of multiple twinning chains.  相似文献   

14.
By converting waste heat into electricity through the thermoelectric power of solids without producing greenhouse gas emissions, thermoelectric generators could be an important part of the solution to today’s energy challenge. There has been a resurgence in the search for new materials for advanced thermoelectric energy conversion applications. In this paper, we will review recent efforts on improving thermoelectric efficiency. Particularly, several novel proof-of-principle approaches such as phonon disorder in phonon-glass-electron crystals, low dimensionality in nanostructured materials and charge-spin-orbital degeneracy in strongly correlated systems on thermoelectric performance will be discussed.   相似文献   

15.
To ensure improvements in predicting the kinetics of bainite formation, it is important to understand the autocatalytic nature of the transformation so that this accelerating effect can be rigorously incorporated in kinetic models. In the present paper, it is assumed that the broad faces of bainitic plates in particular provide new potential nucleation sites for autocatalytic nucleation. The dislocations in the austenite near a bainitic plate are thought to stimulate autocatalysis because carbon is assumed to pile up at these regions and thereby other austenite–bainite interface regions may contain less carbon which promotes nucleation. Based on these assumptions, it is derived that the autocatalytic contribution is proportional to the volume fraction of as-formed bainite, which is consistent with the dependence proposed by Entwisle [V. Raghavan and A.R. Entwisle, Special Report No. 93, The Iron and Steel Institute, London, 1965, p.30] on the basis of empirical knowledge. In addition, it is assumed that autocatalytic nucleation can also depend on the morphology of bainite due to the associated difference in cementite precipitation. This new hypothesis for autocatalysis offers a viable explanation for the irregular variation in kinetics associated with the transition from upper to lower bainite measured for an alloy with eutectoid composition. Furthermore, comparison with experimental data of a Si-rich steel demonstrates that the isothermal kinetics of bainite formation can only be satisfactorily described when the autocatalytic factor is inversely proportional to the thickness of bainitic plates, which is consistent with the model proposed.  相似文献   

16.
Arpan Das 《哲学杂志》2013,93(33):3084-3141
Abstract

Significant volume of literatures are already available in the published domain reporting the mechanical and fracture behaviour of different pressure vessel steels under various testing conditions and other potential circumstances. There have been limited researches available in the open domain to correlate the tensile properties of these steels with their corresponding fracture features at various testing temperatures, which are primarily aimed at in the current investigation. A comprehensive literature review has been performed to realise this fact critically. There has been high probability that fracture features are the signature of the entire deformation history which was operated in the material. In order to understand this hypothesis, many tensile experiments are carried out at a constant strain rate by systematic variation in temperature of a reactor pressure vessel steel. The initial inclusion content and their distribution pattern are kept unaltered for all the specimens before tests, and temperatures are varied methodically to vary the nucleation sites of micro-voids (i.e. carbides, phase interfaces, etc.) which result in change of ductile fracture features. Conventional metallographic technique has been employed to characterise the microstructures at various temperatures. Fractographic characterisation of all broken tensile specimens is done to measure the two-dimensional fracture features (i.e. dimple geometry, extent of tearing ridge pattern and dimple number density) under secondary mode of imaging in scanning electron microscope. Quantitative fractography and image processing have been extensively employed to measure the two-dimensional fractographic features. An excellent correlation has been drawn between the ductile fractographic features, microstructures and corresponding tensile properties of the material as a function of test temperature. This study brings to the fore that from the systematic fractographic features, it is possible to determine reasonably the mechanical and fracture properties of a material, when the microstructure is known.  相似文献   

17.
Abstract

Hybrid composites based on polysulfone of bisphenol A (PSF) and glass fiber (GF) reinforced copolyester liquid‐crystalline polymer (gLCP) were obtained by injection molding. The viscosity of the 10% and 20% gLCP composites was lower than that of pure PSF. The Young's modulus followed the direct rule of mixtures. This was due to the counteracting effects of the decreasing orientation of the liquid‐crystalline polymer (LCP) in the skin at increasing gLCP contents on the one hand; and either the increasing skin thickness in the PSF‐rich composites or the lower orientation of the core in the PSF‐poor composites on the other. The composites with 10–20% gLCP showed the best mechanical performance, because, besides their enhanced processability, they showed a tensile strength similar to that of PSF and much larger notched impact strength.  相似文献   

18.
The mechanical properties of the Stratum Corneum (SC) have been studied by different authors at the macroscopic level, but the modification of its ultra structure during mechanical extension remains unknown. Moreover, little is described about the effect of the mechanical stress on SC barrier function. In this study, we have examined the SC structure changes, at the molecular level, during uniaxial tensile experiments. This was performed on isolated SC samples using Raman spectroscopy. We could identify the strain status of the analyzed samples by using combination of Raman spectra and Partial Least Squares processing. In addition, this approach provided information about lipids and proteins behavior during the sample extension. The structure of the intercellular lipids bilayer became less organized up to ~9% deformation. For higher strains, a plateau corresponding to the minimum organization is observed till the complete failure of the sample. In the same time, protein structures including desmosomes, were characterized by monotonic secondary structure modifications for deformations up to ~9% followed by a plateau. These observations are relevantly demonstrating the effect of extension on the skin barrier state. Such an approach could be objectively used for clinical applications to evaluate skin discomfort degree and skin elastic behavior. This could therefore help with proof of efficacy for cosmetic and dermatologic products. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
B.B. He  W. Xu 《哲学杂志》2015,95(11):1150-1163
The effect of ausforming temperature and strain on the bainitic transformation kinetics was investigated in a low carbon boron steel. A new mechanism, which is based on the competition between the increase in nucleation rate and the decrease in average volume of bainite sheaf after deformation, is proposed. The increase in nucleation rate is due to the decrease in boron concentration at the grain boundaries after small deformation and the formation of sub-grain boundaries at the grain interior after large deformation. The decrease in average volume of bainite sheaf is ascribed to the frequent impingement of bainite sub-units after deformation. The increase in nucleation rate after deformation results in the decrease in incubation time, which is confirmed from the experiment. The increase in nucleation rate overcomes the decrease in average volume of bainite sheaf, resulting in the increase in transformation velocity and volume fraction after small deformation. On the contrary, the decrease in the average volume of bainite sheaf overcomes the increase in nucleation rate after large deformation, leading to the decrease in transformation velocity and volume fraction of bainite.  相似文献   

20.
ABSTRACT

A low carbon high Mn, Ti microalloyed dual phase TWIP steel has been processed through cold rolling and annealing. X-ray diffraction reveals the maximum austenite (≈92%) in HRACST sample whereas, the 50CD sample shows 29% ferrite. The microstructure of HRAC and HRACST samples reveal austenite grains with annealing twins and deformation induced ferrite (DIF). The higher amount of DIF along with deformation twins form during cold deformation. Annealing at 500°C shows recovery, whereas at 700°C shows partial recrystallisation and at 900°C reveals almost full recrystallisation. TEM microstructures of the 900°C for 30?min samples reveal annealing twins with TiC particle. Strong Brass {110}<112> and Goss{110}<001> texture components are observed in HRAC, HRACST and 50CD samples. Goss Twin (GT) {113}<332> and Copper Twin (Cu-T) {552}<115> components are observed in 50CD sample. Addition of Ti results in an average grain size of 20?μm. Maximum YS (1176?MPa) and UTS (1283?MPa) values with the lowest ductility of 11% have been obtained for the 50CD sample which is related to the formation of extensive deformation twin and a higher fraction of DIF. 700°C-30?min and 700°C-60?min samples show an increase in ductility (23% and 34%, respectively) with a marginal decrease in tensile strength (1054?MPa). Annealing at 900°C shows ductility restoration up to 60% with higher tensile strength compared to HRACST sample. Ductile fracture of HRAC and HRACST samples transform to brittle fracture in the 50CD sample. Annealing at 900°C for 30?min shows ductile fracture with some (Fe, Mn)S and TiC particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号