首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The conformational equilibria of 3‐methyl‐3‐silathiane 5 , 3‐fluoro‐3‐methyl‐3‐silathiane 6 and 1‐fluoro‐1‐methyl‐1‐silacyclohexane 7 have been studied using low temperature 13C NMR spectroscopy and theoretical calculations. The conformer ratio at 103 K was measured to be about 5 ax: 5 eq = 15:85, 6 ax: 6 eq = 50:50 and 7 ax: 7 eq = 25:75. The equatorial preference of the methyl group in 5 (0.35 kcal mol?1) is much less than in 3‐methylthiane 9 (1.40 kcal mol?1) but somewhat greater than in 1‐methyl‐1‐silacyclohexane 1 (0.23 kcal mol?1). Compounds 5–7 have low barriers to ring inversion: 5.65 (ax → eq) and 6.0 (eq → ax) kcal mol?1 ( 5 ), 4.6 ( 6 ), 5.1 (Meax → Meeq) and 5.4 (Meeq → Meax) kcal mol?1 ( 7 ). Steric effects cannot explain the observed conformational preferences, like equal population of the two conformers of 6 , or different conformer ratio for 5 and 7 . Actually, by employing the NBO analysis, in particular, considering the second order perturbation energies, vicinal stereoelectronic interactions between the Si–X and adjacent C–H, C–S, and C–C bonds proved responsible. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
1,5‐Daminotetrazole (DAT) is of much interest because of the practical significance and the diversity of characteristics. The study on the decomposition pathway and the kinetics of DAT has been performed based on the quantum chemistry theory. The minimum energy path (MEP) calculation has shown that NH2N3 and NH2CN are the initially detected products of DAT. And the structures of reactant, products and transition state were optimized with MP2 methods using 6‐311G** basis sets, and the energies were refined using CCSD(T)/6‐311G** levels of theory. The calculated rate constants were obtained using the conventional transition‐state theory (TST) and the canonical variational transition‐state theory (CVT) methods. The calculation results indicated that the energy barrier of decomposition reaction is 47.98 kcal mol?1 and the variational effect is small. In addition, the rate constants and the Arrhenius experience formula of DAT decomposition have been obtained between 200 and 2500 K temperature regions. The fitted three‐parameter expressions calculated using the TST and CVT methods are (TST) and (CVT). This work may provide the theoretical support for further experimental synthesis and testing. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
The values of the enthalpy (53.3; 51.3; 20.0 kJ mol?1), entropy (?106; ?122; ?144 J mol?1K?1), and volume of activation (?29.1; ?31.0; ?cm3 mol?1), the reaction volume (?25.0; ?26.6; ?cm3 mol?1) and reaction enthalpy (?155.9; ?158.2; ?150.2 kJ mol?1) have been obtained for the first time for the ene reactions of 4‐phenyl‐1,2,4‐triazoline‐3,5‐dione 1 , with cyclohexene 4 , 1‐hexene 6 , and with 2,3‐dimethyl‐2‐butene 8 , respectively. The ratio of the values of the activation volume to the reaction volume (?VcorrVr ? n) in the ene reactions under study, 1 + 4 → 5 and 1 + 6 → 7 , appeared to be the same, namely 1.16. The large negative values of the entropy and the volume of activation of studied reactions 1 + 4 → 5 and 1 + 6 → 7 better correspond to the cyclic structure of the activated complex at the stage determining the reaction rate. The equilibrium constants of these ene reactions can be estimated as exceeding 1018 L mol?1, and these reactions can be considered irreversible. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
A series of 1,3‐bis(2′‐hydroxyethyl)imidazolium ionic liquids is reported where 1H NMR chemical shift values and thermal stabilities (Td), as determined by thermogravimetric analysis, are correlated with the hydrogen bonding capability of various anions ([Cl?], [Br?], [CF3CO2?], [NO2?], [MsO?], [NO3?], [TfO?], [BF4?], [NTf2?], and [PF6?]). Use of anions with the strongest hydrogen bonding capability, such as chloride [Cl?], bromide [Br?], and trifluoroacetate [CF3CO2?], led to the furthest observed downfield chemical shift values in DMSO‐d6 and the poorest thermal stabilities ([CF3CO2?] < 200 °C). Thermal stabilities in excess of 350 °C and upfield chemical shift values were observed for ionic liquids, which employed the weakly coordinating triflate [OTf?], tetrafluoroborate [BF4?], or bis(trifluoromethylsulfonyl)imide [NTf2?] anion. Optimized structures of selected ionic liquids, as determined by density functional theory calculations at the B3LYP/6‐31G + (d,p) level, indicated that the anion preferred to be located above the imidazolium ring and in close proximity to the hydroxyl groups. Calculated dissociation energies (ΔE) and a comparison of key bonding distances (C2―H, (C2)H···X, O―H, and (O)H···X) also confirmed this structural preference. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, we report an example of intermolecular solid‐state proton transfer in the bicyclic guanidine, hppH. A combination of X‐ray crystallography, CPMAS NMR (13C and 15N) and theoretical calculations allows us to determine that a double proton transfer takes place in the (hppH)2 dimer with an activation energy of about 50 kJ mol?1. According to the B3LYP/6‐311++G(d,p) calculations, the double proton transfer occurs non‐symmetrically through a zwitterion. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Effect of the number and positions of the methoxycarbonyl substituents in 2‐phosphaindolizine on the feasibility of its Diels–Alder (DA) reaction with 1,3‐butadiene has been investigated theoretically at the density functional theory (DFT) level. Among the series of four differently substituted 2‐phosphaindolizines, 3‐methoxycarbonyl‐2‐phosphaindolizine does not undergo the DA reaction due to the highest activation barrier (29.49 kcal mol?1) and endothermicity, whereas the activation barrier of the corresponding reaction of 1,3‐bis(methoxycarbonyl)‐2‐phosphaindolizine is lowest (22.43 kcal mol?1) with exothermicity making it possible to occur. This reactivity trend is corroborated by FMO energy gaps as well as by global electrophilicity powers of the reactants. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
α‐Cyclopropyl stability impacts on singlet and triplet heterocyclic carbenes with acyclic, cyclic, and cyclic‐unsaturated structures are compared and contrasted to di‐t‐butyl as well as t‐butylcyclopropylcarbenes through appropriate isodesmic reactions at B3LYP/AUG‐cc‐pVTZ level. Substitution of one of the t‐butyl groups of di‐t‐butylcarbene with a cyclopropyl alters the ground state multiplicity from triplet to singlet with a singlet–triplet energy separation (ΔEs–t) of 7.2 kcal/mol. Additional heteroatom substitution increases ΔEs–t values for the resulting α‐heteroatom cyclopropylcarbenes in the following order: amino > oxy > thio > phophino. α‐Cyclopropyl group stabilizes singlet states of all our carbenes two to three times more than their corresponding triplet states. The ΔEs–t values of all the carbenes are increased through cyclization, while the introduction of unsaturation in the rings causes small and rather random changes. To probe the kinetic stability of the species, we calculated the transition states for the opening of cyclopropyl through 1,2‐C shift. Interestingly, the 4.1 kcal/mol energy barrier in cyclopropylcarbene is significantly increased in the presence of heteroatoms to 31.2 kcal/mol for aminocyclopropylcarbene. The reactivity of the species is discussed in terms of nucleophilicity and electrophilicity issues showing our carbenes, especially acyclic ones, more nucleophilic than the common N‐heterocyclic carbenes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Spectroscopic studies on excited‐state proton transfer of a new chromophore 2‐(2′‐benzofuryl)‐3‐hydroxychromone (BFHC) have been reported recently. In the present work, based on the time‐dependent density functional theory (TD‐DFT), the excited‐state intramolecular proton transfer (ESIPT) of BFHC is investigated theoretically. The calculated primary bond lengths and angles involved in hydrogen bond demonstrate that the intramolecular hydrogen bond is strengthened. In addition, the phenomenon of hydrogen bond reinforce has also been testified based on infrared (IR) vibrational spectra as well as the calculated hydrogen bonding energies. Further, hydrogen bonding strengthening manifests the tendency of excited state proton transfer. Our calculated results reproduced absorbance and fluorescence emission spectra of experiment, which verifies that the TD‐DFT theory we used is reasonable and effective. The calculated Frontier Molecular Orbitals (MOs) further demonstrate that the excited state proton transfer is likely to occur. According to the calculated results of potential energy curves along O―H coordinate, the potential energy barrier of about 14.5 kcal/mol is discovered in the S0 state. However, a lower potential energy barrier of 5.4 kcal/mol is found in the S1 state, which demonstrates that the proton transfer process is more likely to happen in the S1 state than the S0 state. In other words, the proton transfer reaction can be facilitated based on the photo‐excitation effectively. Moreover, the phenomenon of fluorescence quenching could be explained based on the ESIPT mechanism. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
A homogeneous, molecular, gas‐phase elimination kinetics of 2‐phenyl‐2‐propanol and 3‐methyl‐1‐ buten‐3‐ol catalyzed by hydrogen chloride in the temperature range 325–386 °C and pressure range 34–149 torr are described. The rate coefficients are given by the following Arrhenius equations: for 2‐phenyl‐2‐propanol log k1 (s?1) = (11.01 ± 0.31) ? (109.5 ± 2.8) kJ mol?1 (2.303 RT)?1 and for 3‐methyl‐1‐buten‐3‐ol log k1 (s?1) = (11.50 ± 0.18) ? (116.5 ± 1.4) kJ mol?1 (2.303 RT)?1. Electron delocalization of the CH2?CH and C6H5 appears to be an important effect in the rate enhancement of acid catalyzed tertiary alcohols in the gas phase. A concerted six‐member cyclic transition state type of mechanism appears to be, as described before, a rational interpretation for the dehydration process of these substrates. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
The gas‐phase acidity (GA) values were determined for a number of perfluoroalkyl‐substituted sulfonylimides by measuring proton‐transfer equilibria using a Fourier transform ion cyclotron resonance (FT‐ICR) mass spectrometer. The GA scale below 286.5 kcal mol?1 for (CF3SO2)2NH was extended and partially revised. The GA value of (C4F9SO2)2NH which is currently the strongest acid was revised from 284.1 to 278.6 kcal mol?1. The effect of fluorine atoms on the acidity of perfluoroalkyl‐substituted sulfonylimides was described with the following model where N(α), N(β), N(γ), and N(δ) are the numbers of fluorine atoms at α, β, γ, and δ position in RfSO2 (Rf = perfluoroalkyl group), respectively. This correlation indicates that the electron‐withdrawing ability of the RfSO2 group can be described in terms of the number of fluorine atoms in the perfluoroalkyl group corrected by taking into account their positions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Fourteen ketone/thione‐stabilized triphenylphosphonium methylides were subjected to conventional gas‐phase and flash vacuum pyrolysis (FVP). The kinetics of the first‐order thermal gas‐phase reactions of all these compounds were investigated over 360–653 K temperature range. The values of the Arrhenius log A and energy of activation of these ylides averaged 11.52 ± 0.34 s?1 and 133.20 ± 3.14 kJ mol?1, respectively. The products of sealed‐tube (static) and FVP were analyzed and compared. A mechanism is proposed to account for the products of reaction. The rate constants [k (s?1)] of the substrates at 500 K were calculated and used to substantiate the proposed mechanism of pyrolysis, and to rationalize the thermal gas‐phase reactivities of the ylides under study. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Solvent, temperature, and high pressure influence on the rate constant of homo‐Diels–Alder cycloaddition reactions of the very active hetero‐dienophile, 4‐phenyl‐1,2,4‐triazolin‐3,5‐dione (1), with the very inactive unconjugated diene, bicyclo[2,2,1]hepta‐2,5‐diene (2), and of 1 with some substituted anthracenes have been studied. The rate constants change amounts to about seven orders of magnitude: from 3.95.10?3 for reaction (1+2) to 12200 L mol?1 s?1 for reaction of 1 with 9,10‐dimethylanthracene (4e) in toluene solution at 298 K. A comparison of the reactivity (ln k2) and the heat of reactions (?r‐nH) of maleic anhydride, tetracyanoethylene and of 1 with several dienes has been performed. The heat of reaction (1+2) is ?218 ± 2 kJ mol?1, of 1 with 9,10‐dimethylanthracene ?117.8 ± 0.7 kJ mol?1, and of 1 with 9,10‐dimethoxyanthracene ?91.6 ±0.2 kJ mol?1. From these data, it follows that the exothermicity of reaction (1+2) is higher than that with 1,3‐butadiene. However, the heat of reaction of 9,10‐dimethylanthracene with 1 (?117.8 kJ mol?1) is nearly the same as that found for the reaction with the structural C=C counterpart, N‐phenylmaleimide (?117.0 kJ mol?1). Since the energy of the N=N bond is considerably lower (418 kJ/bond) than that of the C=C bond (611 kJ/bond), it was proposed that this difference in the bond energy can generate a lower barrier of activation in the Diels–Alder cycloaddition reaction with 1. Linear correlation (R = 0.94) of the solvent effect on the rate constants of reaction (1+2) and on the heat of solution of 1 has been observed. The ratio of the volume of activation (?V) and the volume of reaction (?Vr‐n) of the homo‐Diels–Alder reaction (1+2) is considered as “normal”: ?V/?Vr‐n = ?25.1/?30.95 = 0.81. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Cleavage of disulfide bonds is a common method used in linking peptides to proteins in biochemical reactions. The structures, internal rotor potentials, bond energies, and thermochemical properties (ΔfH°, S°, and Cp(T)) of the S–S bridge molecules CH3SSOH and CH3SS(=O)H and the radicals CH3SS?=O and C?H2SSOH that correspond to H‐atom loss are determined by computational chemistry. Structure and thermochemical parameters (S° and Cp(T)) are determined using density functional Becke, three‐parameter, Lee–Yang–Parr (B3LYP)/6‐31++G (d, p), B3LYP/6‐311++G (3df, 2p). The enthalpies of formation for stable species are calculated using the total energies at B3LYP/6‐31++G (d, p), B3LYP/6‐311++G (3df, 2p), and the higher level composite CBS–QB3 levels with work reactions that are close to isodesmic in most cases. The enthalpies of formation for CH3SSOH, CH3SS(=O)H are ?38.3 and ?16.6 kcal mol?1, respectively, where the difference is in enthalpy RSO–H versus RS(=O)–H bonding. The C–H bond energy of CH3SSOH is 99.2 kcal mol?1, and the O–H bond energy is weaker at 76.9 kcal mol?1. Cleavage of the weak O–H bond in CH3SSOH results in an electron rearrangement upon loss of the CH3SSO–H hydrogen atom; the radical rearranges to form the more stable CH3SS· = O radical structure. Cleavage of the C–H bond in CH3SS(=O)H results in an unstable [CH2SS(=O)H]* intermediate, which decomposes exothermically to lower energy CH2 = S + HSO. The CH3SS(=O)–H bond energy is quite weak at 54.8 kcal mol?1 with the H–C bond estimated at between 91 and 98 kcal mol?1. Disulfide bond energies for CH3S–SOH and CH3S–S(=O)H are low: 67.1 and 39.2 kcal mol?1. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
The study of the hydrogen/deuterium exchange reactions of the C(2)‐proton for different carbene precursors has been carried out in the absence and presence of β‐cyclodextrin in D2O at 25°C. Formation of the inclusion complexes of imidazolium salts with the native β‐cyclodextrin and the β‐dimethylcyclodextrin is demonstrated by 1D and 2D 1H NMR, ESI/HRMS and a molecular modelling study. Formation of the inclusion complexes of imidazolium salts with the native β‐cyclodextrin and the β‐dimethylcyclodextrin is a simple and efficient method to modify the acidity of the imidazolium H(2) and to modify its environment. Encapsulation of 1,3‐disubstituted imidazolium chloride by β‐cyclodextrins results in the inhibition of the H(2)/D exchange in the complex. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
Based on energetic compound [1,2,5]‐oxadiazolo‐[3,4‐d]‐pyridazine, a series of functionalized derivatives were designed and first reported. Afterwards, the relationship between their structure and performance was systematically explored by density functional theory at B3LYP/6‐311 g (d, p) level. Results show that the bond dissociation energies of the weakest bond (N–O bond) vary from 157.530 to 189.411 kJ · mol?1. The bond dissociation energies of these compounds are superior to that of HMX (N–NO2, 154.905 kJ · mol?1). In addition, H1, H2, H4, I2, I3, C1, C2, and D1 possess high density (1.818–1.997 g · cm?3) and good detonation performance (detonation velocities, 8.29–9.46 km · s?1; detonation pressures, 30.87–42.12 GPa), which may be potential explosives compared with RDX (8.81 km · s?1, 34.47 GPa ) and HMX (9.19 km · s?1, 38.45 GPa). Finally, allowing for the explosive performance and molecular stability, three compounds may be suggested as good potential candidates for high‐energy density materials. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Reactions of ·OH/O .? radicals and H‐atoms as well as specific oxidants such as Cl2.? and N3· radicals have been studied with 2‐ and 3‐hydroxybenzyl alcohols (2‐ and 3‐HBA) at various pH using pulse radiolysis technique. At pH 6.8, ·OH radicals were found to react quite fast with both the HBAs (k = 7.8 × 109 dm3 mol?1 s?1 with 2‐HBA and 2 × 109 dm3 mol?1 s?1 with 3‐HBA) mainly by adduct formation and to a minor extent by H‐abstraction from ? CH2OH groups. ·OH‐(HBA) adduct were found to undergo decay to give phenoxyl type radicals in a pH dependent way and it was also very much dependent on buffer‐ion concentrations. It was seen that ·OH‐(2‐HBA) and ·OH‐(3‐HBA) adducts react with HPO42? ions (k = 2.1 × 107 and 2.8 × 107 dm3 mol?1 s?1 at pH 6.8, respectively) giving the phenoxyl type radicals of HBAs. At the same time, this reaction is very much hindered in the presence of H2PO ions indicating the role of phosphate ion concentration in determining the reaction pathway of ·OH adduct decay to final stable product. In the acidic region adducts were found to react with H+ ions. At pH 1, reaction of ·OH radicals with HBAs gave exclusively phenoxyl type radicals. Proportion of the reducing radicals formed by H‐abstraction pathway in ·OH/O .? reactions with HBAs was determined following electron transfer to methyl viologen. H‐atom abstraction is the major pathway in O .? reaction with HBAs compared to ·OH radical reaction. H‐atom reaction with 2‐ and 3‐HBA gave transient species which were found to transfer electron to methyl viologen quantitatively. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Nine boat‐shaped cyclonona‐3,5,7‐trienylidenes are compared and contrasted with respect to their multiplicity, nucleophilicity, electrophilicity, band gap (ΔEHOMO ? LUMO), Natural bond orbital (NBO) atomic charge, force constant, as well as the aptitude for dimerization, and rearrangement through proper isodesmic reactions at B3LYP/AUG‐cc‐pVTZ and B3LYP/6‐311++G**//B3LYP/6‐31+G* levels of theory. The nine cyclic carbenes include unsubstituted (1CH2) plus eight α‐cyclopropylcyclonona‐3,5,7‐trienylidenes, which are substituted with ?‐SiMe2, ?‐NMe, ?‐PMe, ?‐O, ?‐S, ?‐CH2, ?‐cyclopropyl, and ?‐CMe2 (2SiMe2, 2NMe, 2PMe, 2O, 2S, 2CH2, 2cyclopropyl, and 2CMe2, respectively). The latter eight species enjoy the stabilizing interaction of the occupied Walsh orbital of cyclopropyl with the vacant pπ orbital of the carbene center (Walshcyclopropyl → pπ carbene). Among them, the singlet closed shell 2NMe appears the most promising for exhibiting the highest relative singlet–triplet energy gap (ΔEs ? t = 27.1 kcal mol?1). In contrast, the least stable derivative is triplet 2SiMe2, which exhibits the lowest relative ΔEs ? t of ?5.5 kcal mol?1. The overall trend of ΔEs‐t is 2NMe > 2PMe > 2S > 2O > 2cyclopropyl > 2CMe2 > 2CH2 > 1CH2 > 2SiMe2. With one negative force constant, the unsubstituted 1CH2 turns out to be a transition state, whereas the rest emerge as minima. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
syn‐2,2,4,4‐Tetramethyl‐3‐{2‐[3,4‐alkylenedioxy‐5‐(3‐pyridyl)]thienyl}pentan‐3‐ols self‐associate both in the solid state and in solution. Single‐crystal X‐ray diffraction study of the 3,4‐ethylenedioxythiophene (EDOT) derivative shows that it exists as a centrosymmetric head‐to‐tail, syn dimer in the solid state. The IR spectra of the solids display only a broad OH absorption around 3300 cm?1, corresponding to a hydrogen‐bonded species. 1H Nuclear Overhauser Effect Spectroscopy (NOESY) NMR experiments in benzene reveal interactions between the tert‐butyl groups and the H2 and H6 protons of the pyridyl group. Two approaches have been used to determine association constants of the EDOT derivative by NMR titration, based on the concentration dependence of (i) the syn/anti ratio and (ii) the OH proton shift of the syn rotamer. Reasonably concordant results are obtained from 298 to 323 K (3.6 and 3.9 M?1, respectively, at 298 K). Similar values are obtained from the syn OH proton shift variation for the 3,4‐methylenedioxythiophene (MDOT) derivative. Concentration‐dependent variation of the anti OH proton shift in the latter suggests that the anti isomer associates in the form of an open, singly hydrogen‐bonded dimer, with a much smaller association constant than the syn rotamer. Self‐association constants for 3‐pyridyl‐EDOT‐alkanols with smaller substituents vary by a factor of 4 from (i‐Pr)2 up to (CD3)2, while the hetero‐association constants for the same compounds with pyridine vary slightly less. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
For the first time, one‐pot solid‐state synthesis of 12 photochromic materials based on photochromic dihydroindolizine system substituted in both fluorene part (region A) and the heterocyclic part (region C) has been established. This method has immense advantages, which are short‐time reaction, high‐yield and low‐yield by‐products, and easily purification and separation processes. In addition, this method will help in getting over the tremendously purification and low‐yield problems faced since the worth‐finding of this family of photochromic materials. The absorption maxima (λmax) and the half‐lives (t1/2) of the colored betaines were detected in all cases using multichannel UV/Vis spectrophotometric measurements. The rate constants of the thermal back reaction of the betaines were determined at constant temperature by measuring the decrease in the maximum absorption intensity (λmax) with time. The half‐lives (t1/2) and rate constants (k) of betaines under examination were calculated by plotting lnA against time (t). The kinetic measurements could be detected by both spectra scan and time‐dependent decay measurements. Examination of the Arrhenius parameters reveals an underlying compensation between Ea and log A, whereby an increase in Ea is opposed by an increase in log A. The compensation appears in the corresponding Eyring parameters, ΔH and ΔS; betaine structural changes that lead to lower, more favorable enthalpies of activation engender opposing entropic changes. At the isokinetic temperature Tiso = β, structural changes do not affect the rate constant of a reaction series because the changes of ΔH are counterbalanced by changes of ΔS. The existence of an isokinetic relationship indicates a common structure of the transition state of all thermal back reaction of betaine under investigation. The computational results suggest that the decoloration reaction is a two‐step mechanism. The first step corresponds to the transoid–cisoid isomerization with an activation barrier of 10.3 kJ mol?1, and the second step is the ring closure from the cisoid intermediate with a barrier 71.3 kJ mol?1, which represent the rate determining step for thermal decoloration. The photochemical ring opening of DHIs to betaines is a disrotatory 1,5‐electrocyclic reaction, whereas the thermal ring‐closing occurs in the conrotatory mode. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
The structural dynamics of 4‐pyrimidone (4PMO) in the A‐ and B‐band absorptions was studied by using the resonance Raman spectroscopy combined with quantum chemical calculations to better understand whether the excited state intramolecular proton‐transfer (ESIPT) reaction occurs in Franck–Condon regions or not. The transition barrier for the ground state proton‐transfer tautomerization reaction between 3(H) (I) and hydroxy (II) was determined to be 165 kJ·mol−1 in vacuum on the basis of the B3LYP/6‐311++G(d,2p) level of theory calculations. Two ultraviolet absorption bands of 4PMO were, respectively, assigned as πH→π*L and πH→π*L+1 transitions. The vibrational assignments were done on the basis of the Fourier transform (FT)‐Raman and FT‐infrared (IR) measurements, the density‐functional theory computations and the normal mode analysis. The A‐ and B‐band resonance Raman spectra of 4PMO were measured in water, methanol and acetonitrile. The structural dynamics of 4PMO was obtained through the analysis of the resonance Raman intensity pattern. We discuss the similarities in the structural dynamics of 4PMO and 2‐thiopyrimidone (2TPM), and the results were used to correlate to the intramolecular hydrogen‐atom‐transfer process as observed by matrix‐isolation IR experiments for 4PMO. A variety of NH/CH bend modes + C = O stretch mode mark the hydrogen‐detachment‐attachment or ESIPT reaction initiated in Franck–Condon region for 4PMO and 2TPM. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号