首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
By ultraviolet (UV)-assisted synthetic procedure, we have successfully prepared several UV curable organic/inorganic hybrid nanocomposites with excellent gas barrier capabilities, moderate hardness, and good adhesive strength. The experimental results reveal that the physical properties of nanocomposites depend on their chemical structures. Therefore, introduction of silicone and polyurethane (PU) into the Acrylics backbone dramatically raises the adhesive strength as well as refractive index and lowers the gas penetration. Furthermore, we have also applied lab-made nanocomposite g for the encapsulation of organic optoelectronic devices such as OLEDs, flexible OLEDs, and organic solar cells. With the package of lab-made nanocomposite g, the organic optoelectronic devices effectively resist the entry of moisture and oxygen in the air, extending the lifetimes.  相似文献   

2.
The lifetimes of organic light emitting diodes (OLEDs) have been successfully enhanced with the modulation of LiF thickness and the utilization of encapsulating adhesives, which have been successfully and quickly synthesized with UV irradiation. Experimental results demonstrate that LiF and lab-made encapsulating adhesives can block the invasion of moisture as well as oxygen in the atmosphere into the OLEDs so that the lifetimes of devices with their encapsulation are 18-folds longer than those without encapsulation.  相似文献   

3.
Novel polyurethane (PU) adhesive was prepared and coated on poly(methyl methacrylate) (PMMA) and poly(methyl methacrylate)/fullerene (PMMA/Full-C60) composite. Dip-coating technique was employed as facile and cost-effective procedure to coat polyurethane on film substrate. The properties of PU/PMMA and PU/PMMA/Full-C60 composite were studied using Fourier transform infrared spectroscopy, Field Emission Scanning Electron Microscopy, tensile, adhesion, thermal and flammability measurement. Testing polyurethane-coated PMMA exhibited crumpled surface while fullerene addition formed unique pattern of dispersed spherical structures. Fullerene nanofiller loading improved the adhesion and mechanical properties of composite films due to polymer–carbon interaction. In PU/PMMA/Full-C60 0.5 composite with 0.5 wt.% nanofiller, tensile strength (71.4 MPa) was increased by 18.6% while tensile modulus was increased by 143.85% compared with PU/PMMA. In PU/PMMA/Full-C60 0.5, T0 of 473 °C and Tmax of 655 °C were observed. Increasing the fullerene content up to 0.5 wt.% decreased the peak heat release rate to 131 kW/m2. Novel polyurethane-coated PMMA/Full-C60 composite have potential applications as adhesive coatings in electronic and automotive appliances.  相似文献   

4.
Organic light‐emitting diodes (OLEDs) are discussed for electro‐optical integrated devices that are used for optical signal transmission. Organic optical devices including polymeric optical fibers are used for optical communication applications to realize polymeric electro‐optical integrated devices. The OLEDs were fabricated by vacuum process, i.e. the organic molecular beam deposition (OMBD) technique or a solution process on a polymeric or a glass substrate, for comparison. Optical signals faster than 100 MHz have been created by applying pulsed voltage directly to the OLED utilizing rubrene doped in 8‐hydoxyquinolinum aluminum (Alq3), as an emissive layer. OLEDs fabricated by solution process utilizing rubrene doped in carrier‐transporting materials have also discussed. OLEDs utilizing polymeric materials by solution process are also fabricated and discussed. Moving‐picture signals are transmitted utilizing both vacuum‐ and solution‐processed OLEDs, respectively.  相似文献   

5.
Crystallized 4,7‐diphyenyl‐1,10‐phenanthroline (BPhen) films deposited by convenient vacuum thermal evaporation technique have been found to be an efficient means to extract the substrate wave guided light in organic light emitting diodes (OLEDs). The optimized BPhen film working as organic scattering layer was successfully used with OLEDs for light outcoupling efficiency improvement. Enhancement of 26%, 15% and 6% in efficiency of the blue, green and red OLEDs were obtained, respectively. The achievement was found to be advantageous in terms of simplicity of fabrication method and feasibility for large area OLED applications. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
The oxide/organic interfaces play crucial roles in the hole injection from the anode electrodes to the emitting organics in organic light-emitting diodes (OLEDs), and hence have strong impacts on the efficiencies and other properties of the devices. Indium-tin oxide (ITO) is currently the most popular anode material used in OLEDs due to several merits, such as good etch ability, good adherence, high transparency, low resistivity, and high work function. Interfacial engineering between the ITO electrode and the overlying organic layers is an important process to obtain the high performance of the diode devices. In this article, recent progress in modification of the ITO/organic interfaces is reviewed, as these interfaces are important to the development of the technologies aiming at improving the electroluminescence, and efficiencies as well as reducing the operation voltages of OLEDs. ITO/Organic interfacial properties can be controlled or modified by simply changing the surface properties of ITO using chemical or physical treatments, and by adding a buffer layer (e.g., metal, oxide, or organic thin films) between the ITO and hole transport or emitting organic layers. The literature data showed that the electroluminescence, efficiencies, and lifetimes of the OLEDs could be greatly increased and the operation voltage considerably decreased when the ITO/organic interfaces have been properly improved.  相似文献   

7.
Electroluminescent intensity and external quantum efficiency (EQE) in ultraviolet organic light‐emitting diodes (UV OLEDs) have been remarkably enhanced by using a graded hole‐injection and ‐transporting (HIT) structure of MoO3/N,N ′‐bis(naphthalen‐1‐yl)‐N,N ′‐bis(phenyl)‐benzidine/MoO3/4,4′‐bis(carbazol‐9‐yl)biphenyl (CBP). The graded‐HIT based UV OLED shows superior short‐wavelength emis‐ sion with spectral peak of ~410 nm, maximum electroluminescent intensity of 2.2 mW/cm2 at 215 mA/cm2 and an EQE of 0.72% at 5.5 mA/cm2. Impedance spectroscopy is employed to clarify the enhanced hole‐injection and ‐transporting capacity of the graded‐HIT structure. Our results provide a simple and effective approach for constructing efficient UV OLEDs. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

8.
有机材料在各种波长的折射率计算   总被引:7,自引:0,他引:7  
李加  王敬伯 《发光学报》1994,15(2):102-106
使用Vogel方法和介质的色散关系,计算有机化合物在各波长的折射率n(λ).用Vogel方法把化合物分子分解成碎片,加和得到化合物在某几个波长的折射率.假设化合物在所计算的波长范围内为正常色散关系,使用Voyel方法得到的两个折射率,通过Cauchy公式得到色散曲线,从而得到各波长的折射率n(λ).通过对有机化合物芪盐和高分子材料聚苯乙烯的各波长折射率进行计算,并与材料在某一特定波长的实际折射率对比,证明了计算结果比较准确.并对双折射液晶材料的折射率计算进行了探索.  相似文献   

9.
The main focus of this study is to improve the light extraction efficiency, as well as directionality of organic light emitting diodes (OLEDs) using multi-layer structures between Indium tin Oxide (ITO) and glass layers in a typical OLED. In conventional OLEDs, only about half of the light generated in the emission zone can reach to the glass substrate due to refractive index mismatch in ITO (n = 1.8?i0.01)/glass (n = 1.51) interface. The main attempt is to reduce the share of total internal reflection (TIR) and hence, the effect of different structures such as Thue-Morse and Fibonacci have been investigated and optimized with suitable layer thickness and materials based on Transfer Matrix Method (TMM). The most effective Multi-layer structures have been added to conventional OLED and have been analyzed the extraction efficiency using Finite Difference Time Domain (FDTD) method. Results show large enhancement of extraction efficiency (about 40%) in ITO/glass interface. Using this idea and applying micro-lenses array to glass substrate at the same time, one can get even higher extraction efficiency in OLED. The interesting aspect of this project is its easy fabrication process in order to commercialize the product with highest extraction efficiency and low fabrication cost.  相似文献   

10.
Polymer nanocomposites (NC) are fabricated by incorporating well dispersed nanoscale particles within a polymer matrix. This study focuses on elastomeric polyurethane (PU) based nanocomposites, containing organically modified silicates (OMS), as bioactive materials. Nanocomposites incorporating chlorhexidine diacetate as an organic modifier (OM) were demonstrated to be antibacterial with a dose dependence related to both the silicate loading and the loading of OM. When the non-antibacterial OM dodecylamine was used, both cell and platelet adhesion were decreased on the nanocomposite surface. These results suggest that OM is released from the polymer and can impact on cell behaviour at the interface. Nanocomposites have potential use as bioactive materials in a range of biomedical applications.  相似文献   

11.
This work reports the preparation of well-dispersed surface-modified titiania nanoparticles in organic solvents. Different types of surface-modified titania nanoparticles can be incorporated into epoxy matrix to form hybrid nanocomposites. The hybrid nanocomposite films have higher refractive index than pure epoxy system. The refractive index can be tuned by using different forms of titania nanoparticles and by changing the titania solid content. The titania solid content in the epoxy matrix can be more than 70 wt% without affecting the optical transparency of the hybrid film.  相似文献   

12.
Layered ZnS/SiO2, ZnS/Al2O3, and ZnSe/SiO2 nanocomposites have been studied. It has been shown that the use of the Maxwell–Garnett and Bruggeman models, as well as the Luyengi formula, in the low dispersion region makes it possible to predict the production of films with a given effective refractive index. Calculated values of the refractive index correlate well with experimental data. The maximal discrepancy between the theoretical and experimental values of the refractive index and the maximal value of the depolarization factor depend on the structure and microstrains.  相似文献   

13.
Abstract

Poly(ethylene glycol‐co‐cyclohexane‐1,4‐dimethanol terephthalate)(PETG)/clay nanocomposites were prepared via melt intercalation technique. The effects of concentration of the organic modifier in the clay on the properties of the nanocomposites were studied. Three clays modified using the same alkyl ammonium modifier, but differing in modifier concentration, are used for this purpose. The nanocomposites are characterized using wide‐angle x‐ray diffraction for their structure. Dynamic mechanical analysis of these nanocomposites is also studied to investigate their viscoelastic behaviors. The x‐ray diffraction study shows an increase in the interlayer spacing of organically modified clays as compared to that of Na+ clay. The extent of increase in the interlayer spacing is dependent on the concentration of organic modifier used to modify the montmorillonite. The presence of well‐defined diffraction peaks and the observed increase in the interlayer spacing in the nanocomposites imply the formation of an intercalated hybrid. Dynamic mechanical properties show an increase in the storage modulus of the nanocomposite over the entire temperature range studied, as compared to the pristine polymer. Investigation of the rubbery plateau modulus confirms the reinforcing effect of organically modified clay. The observed enhancement in the modulus was greater for the clay with the lowest content of the organic modifier. These results indicate that in nanocomposites, apart from the compatibility of the organic modifier with the polymer, its concentration in the interlayer also plays a critical role in the structure development and thus in the enhancement of the properties. The nanocomposites showed reduced damping, which was governed by the modifier concentration in the clay.  相似文献   

14.
Poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) was modified by different concentrations of multi-wall carbon nanotubes (MWNTs), and the nanocomposites of PEDOT:PSS and MWNTs were firstly used as hole-injection layer in fabrication of organic light-emitting devices (OLEDs) by using a double-layer structure with hole-injection layer of doped PEDOT:PSS and emitting/electron transport layer of tris(8-hydroxyquinolinato) aluminum (Alq3). PEDOT:PSS solution doped with MWNTs was spin-coated on clean polyethylene terephthalate (PET) substrate with indium tin oxide (ITO). It was found that the electroluminescence (EL) intensity of the OLEDs were greatly improved by using PEDOT:PSS doped with MWNTs as hole-injection layer which might have resulted from the hole-injection ability improvement of the nanocomposites. Higher luminescence intensity and lower turn-on voltage were obtained by these devices and the luminance intensity obtained from the device with the hole-injection layer of PEDOT:PSS doped by 0.4 wt.% MWNTs was almost threefolds of that without doping.  相似文献   

15.
A series of regiochemically varied and core size extension‐modulated arene‐ and fluoroarene‐thiophene co‐oligomers and the unsubstituted sexithiophene α6T were investigated theoretically to explore their electronic and optical properties. These phenylene‐thiophene oligomers show great potential for application in organic light‐emitting diodes (OLEDs), organic diode lasers, and organic thin‐film transistors (OTFTs) because of their feasible tuning of optical and electronic properties by the various structural tunings. Density functional theory (DFT) and the ab initio HF were employed to investigate the geometric and electronic structures of the oligomers in the ground state, and the singles configuration interaction (CIS) methods were used to study the lowest singlet excited state. The lowest excitation energies (Egs), the radiative lifetime τ, and the maximal absorption/emission wavelength of the oligomers were studied within time‐dependent DFT (TDDFT). All calculations were performed using the 6‐31G(d) basis set. The results show that the HOMOs, LUMOs, energy gaps, ionization potentials (IPs), electron affinities (EAs), and reorganization energies are significantly affected by the various structural tunings in these co‐oligomers, which is important for the improvement of the hole and electron injection into OLEDs. Interestingly, the LUMO energy of 1b , 2b , and 3b is lower than that of α6T and 1a , 2a , 3a by about 0.12 ~ 0.47 eV, indicating that the fluorophenyl‐substitution has significantly improved the electron injection properties of the oligomers. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
Highly adhesive bismuth oxide thin films on glass have been prepared by air oxidation of vacuum evaporated bismuth thin films at various temperatures. The transmittance, optical band gap, refractive index and adhesion show temperature and oxidation time effects. The films show a direct band gap between 2 and 2.5 eV. The refractive indices are in the range 1.854-1.991. The transmittances of the bismuth oxide films are quite high in a large wavelength range. These bismuth oxide films can have potential use in optical waveguides.  相似文献   

17.
In this work, a polypropylene (PP)/attapulgite nanocomposite was prepared via melt blending using a novel organically modified attapulgite (OATP). The thermal stability of PP/clay nanocomposites compared to pure PP was examined in nitrogen using a kinetic analysis. The kinetic parameters, including reaction order and activation energy (A and E a) of the degradation process were determined by applying the Flynn‐Wall‐Ozawa method using derivative thermogravimetric (DTG) curves. At the same time, the effect of organic attapulgite on thermal decomposition of polypropylene matrix was analyzed. As a result, PP/OATP nanocomposites have slightly higher degradation temperature than that of the pure PP. The values of the reaction order of PP and PP/OATP nanocomposites are close to 1 in the nonisothermal degradation process. The activation energies of PP/OATP nanocomposites also increase slightly compared to the pure PP, thus it is suggested that the org‐attapulgite has little effect on the thermal stability of the pure PP.  相似文献   

18.
We show the first direct measurement of the potential distribution within organic light emitting diodes (OLEDs) under operation and hereby confirm existing hypotheses about charge transport and accumulation in the layer stack. Using a focused ion beam to mill holes in the diodes we gain access to the cross section of the devices and explore the spatially resolved potential distribution in situ by scanning Kelvin probe microscopy under different bias conditions. In bilayer OLEDs consisting of tris(hydroxyquinolinato) aluminum (Alq3)/N, N ′‐bis(naphthalene‐1‐yl)‐N,N ′‐bis(phenyl) benzidine (NPB) the potential exclusively drops across the Alq3 layer for applied bias between onset voltage and a given transition voltage. These findings are consistent with previously performed capacitance–voltage measurements. The behavior can be attributed to charge accumulation at the interface between the different organic materials. Furthermore, we show the potential distribution of devices with different cathode structures and degraded devices to identify the cathode interface as main culprit for decreased performance. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

19.
Polymers find a number of potentially useful applications in optoelectronic devices. These include both active layers, such as light-emitting polymers and hole-transport layers, and passive layers, such as polymer barrier coatings and light-management films. This paper reports the experimental results for polymer films deposited by resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) and resonant infrared pulsed laser deposition (RIR-PLD) for commercial optoelectronic device applications. In particular, light-management films, such as anti-reflection coatings, require refractive-index engineering of a material. However, refractive indices of polymers fall within a relatively narrow range, leading to major efforts to develop both low- and high-refractive-index polymers. Polymer nanocomposites can expand the range of refractive indices by incorporating low- or high-refractive-index nanoscale materials. RIR-MAPLE is an excellent technique for depositing polymer-nanocomposite films in multilayer structures, which are essential to light-management coatings. In this paper, we report our efforts to engineer the refractive index of a barrier polymer by combining RIR-MAPLE of nanomaterials (for example, high refractive-index TiO2 nanoparticles) and RIR-PLD of host polymer. In addition, we report on the properties of organic and polymer films deposited by RIR-MAPLE and/or RIR-PLD, such as Alq3 [tris(8-hydroxyquinoline) aluminum] and PEDOT:PSS [poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate)]. Finally, the challenges and potential for commercializing RIR-MAPLE/PLD, such as industrial scale-up issues, are discussed.  相似文献   

20.
Organic optoelectronic devices including organic light‐emitting diodes (OLEDs) and polymer solar cells (PSCs) have many advantages, including low‐cost, mechanical flexibility, and amenability to large‐area fabrication based on printing techniques, and have therefore attracted attention as next‐generation flexible optoelectronic devices. Although almost 100% internal quantum efficiency of OLEDs has been achieved by using phosphorescent emitters and optimizing device structures, the external quantum efficiency (EQE) of OLEDs is still limited due to poor light extraction. Also, although intensive efforts to develop new conjugated polymers and device architectures have improved power conversion efficiency (PCE) up to 8%–9%, device efficiency must be improved to >10% for commercialization of PSCs. The surface plasmon resonance (SPR) effect of metal nanoparticles (NPs) can be an effective way to improve the extraction of light produced by decay of excitons in the emission layer and by absorption of incident light energy within the active layer. Silver (Ag) NPs are promising plasmonic materials due to a strong SPR peak and light‐scattering effect. In this review, different SPR properties of Ag NPs are introduced as a function of size, shape, and surrounding matrix, and review recent progress on application of the SPR effect of AgNPs to OLEDs and PSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号