首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Theγ-decay of40Ar has been studied by particle-γ-ray coincidence measurements in the37Cl(α, pγ) reaction at 12 and 13 MeV bombarding energy. Particle-γ-ray angular correlations and linear polarizations ofγ-rays were measured at 12 MeV. A lifetime measurement using the Doppler-shift attenuation method was performed at 11 MeV. The coexistence of spherical and deformed states in40Ar could be concluded from the observation of aK π=0+ rotational band which has itsI π=0+ through 6+ members at 2,121, 2,524, 3,515 and 4,959 KeV excitation energy. The intrinsic quadrupole moment derived fromB(E2) values is ∥Q 0∥=1,320 ?120 +60 mb. Negative-parity states with high spin were observed at 4,858(5?), 4,494(5?), 4,226(4?) and 4,991 KeV(4?) excitation energy. A complete account of all levels below 5 MeV excitation energy is obtained by a model in which twod 3/2 proton holes couple weakly to the42Ca levels below 4.75 MeV excitation energy.  相似文献   

2.
New shell model calculations have predicted several high-spin (I π=5+ and 6+) levels in28Si near 10 MeV excitation energy which are missing from or ambiguous in existing experimental studies. Angular distributions, linear polarizations and Doppler-shifts ofγ-rays have been measured for theγ-decay of theE p=1,911 and 2,073 KeV resonances of the27Al(p, γ) reaction in an attempt to discover these missing states or confirm the discrepancies between experiment and theory. The excitation energies and spin-parities of the resonances were determined as 13,424.4±0.2 keV,I π=5+ and 13,582.3±0.5 keV,I π=6+. States populated in theγ-decay of these resonances were assigned spins and parities as follows: 11,777 keV,I π=5+; 11,331 keV,I π=6+; 10,417 keV,I π=5+; 9,417 keV,I π=4+ and 8,945 keV,I π=5+. On the basis ofγ-ray transition rates T=1 is assigned to the 13,424 keV level and T=0 to the 10,417 and 11,777 keV levels. With the new data excellent agreement is achieved between the experimental spectrum of28Si and the new shell model predictions. These data provide evidence for aK π=3+ rotational band comprised by the 6,276, 6,889, 8,945 and 11,331 keV levels. This band emerges also from the shell model wave functions as do theK π=0+ bands based on the ground state and the 6,691 keV state.  相似文献   

3.
Highly excited states in30Si were investigated using the27Al(α, p γ) reaction. Proton-γ ray angular correlations were measured atE α=12, 14.1 and 15MeV. At 15MeV linear polarizations ofγ-rays were measured in coincidence with protons using a five-crystal Compton-polarimeter. Lifetimes were measured atE α=14.6 MeV using the Dopper-shift attenuation method. Unambigious spin-parity assignments were obtained for the levels at 6,865 (3+), 7,001 (5+), 7,079 (3+), 7,810 (4), 9,371 (6+), 7,613 (4?), 8,196 (5?), 8,596 (4?), 8,963 (5?), 9,111 (6?), 9,350 (4?), 9,507 (5?), 9,777 (6?), 10,188 (5?), 10,305 (3?), 10,561 (6?), 10,725 (7?), 11,477 (6?) and 11,544 (7?)keV excitation energy, respectively. The structure of30Si is understood both in terms of the shell model and the collective model. The levels at 5,487, 6,505, 8,196, 9,777 and 11,544keV, respectively, are theI π=3? through 7? members of a well developedK π=3? rotational band with intrinsic quadrupole moment |Q 0|=350 ?70 +250 mb. There is evidence of further rotational bands, among them aK π=3? band with |Q 0|=800 ?80 +422 mb.  相似文献   

4.
A search for high-spin states in28Si has been performed byn?y coincidence measurements in the25Mg(α,nγy) reaction atE α=14 and 15.5 MeV. Spin-parity assignments of the observed levels were obtained fromn?γ angular correlation and lifetime measurements atE α=14.5 MeV. Theγ-decay of the 9,164 keV level was investigated separately with the27Al(p, γ) reaction at theE p=2,160 and 2,312 keV resonances. Rotational bands withK π=3? (comprising levels atE x=6,879, 8,413, 10,188 and 12,204 keV),K π =5? (comprising levels atE x=9,702, 11,577 and 13,741 keV) andK π=0+ (comprising levels atE x=6,691, 7,381, 9,164 and 11,509 keV) were observed. The finding of the latter band supports the idea of coexisting oblate and prolate shapes in28Si. A level at 14,643 keV excitation energy has the properties of theI π=8+ member of the ground state band. There are additional positive-parity high-spin states which do not fit into rotational bands. All types of positive-parity states are well accounted for by shell model calculations.  相似文献   

5.
The Coulomb excitation measurements for the230Th nucleus with32S,84Kr and142Nd projectiles are presented. The use of different projectiles allowed us to get information in the ground-state band and side bands. The energy spectrum of the ground-state band and of the lowest negative-parity band have been investigated up to the spin valueI=24+ andI=19?(21), respectively. Five side bands (K π=0+, 2 1 + , 2 2 + , 1?, 2?) were observed also. The branching ratios for a large number of transitions in the spin regionI≦10 for π=+1 andI≦9 for π=? 1 are analysed. The full set of experimental data contains information on the mixing of the adiabatic states and on the nuclear response to the electromagnetic field ofγ-radiation. It is shown that the experimental data may be explained taking into account the coupling of the ground-β- and twoγ-bands and also of theK π=0?, 1? and 2? negative-parity bands. An enhancement of the transitions from theγ-to theβ-band in respect to the transitions from theγ to the ground band and from theβ- to the ground band is reported. The mixing of the negative-parity bands is found to be typical for the alignment of the octupole-vibrational angular momentum. The strong spin dependence of the intrinsic matrix elements of the electric-dipole operator follows from the branching ratios of inter- and intra-band transitions from theK π=0? states.  相似文献   

6.
Gamma-decay modes and spin(-parity) assignments of levels in25Mg have been systematically investigated up to 10 MeV excitation energy by particle-γ-ray angularcorrelation measurements with the24Mg(d, pγ) reaction at 6.5 MeV bombarding energy and with the22Ne(α,) reaction at 11.8, 12.5, 14.4 and 15.5 MeV bombarding energy. A level scheme has been established which is comprehensive up to 8.3 MeV excitation energy forI≦9/2 and up to 10 MeV for 9/2O d 5/2 — 1s 1/2-O d 3/2 shell and the unifieds-d shell Hamiltonian. The agreement is good to excellent. The first intruder states are located near 6.8 MeV excitation energy. The collective properties of25Mg beyond the well established rotational bands are investigated using both the new experimental information and theB(E2)'s obtained from the shell model. The spectrum of25Mg is completely rotational for the first five to six MeV above the yrast line. Shell modelB (M 1)'s reflect the Nilsson model structure of25Mg in great detail. The prospectiveI π=9/2?, 13/2?, and 15/2? members of the established negative-parity,K=1/2 band are found in levels atE x=7801, 9410, and 8896 keV.  相似文献   

7.
Measurements of resonance strengths and ofγ-ray angular distributions or anisotropies have been performed on selected resonances of the25Mg(p, γ) reaction in the rangeE p=2–4 MeV,E x=8.2?10.1 MeV with an emphasis on high-spin andT=1 analog resonances. EightT=1 states are identified, among them high-spin states at 8747 keV (I=6), 9286 KeV (I=5), and 9986 keV (I π = 7+, 6+). Shell model calculations in thes-d basis space reproduce the branching ratios of these states and clarify the nature of final states. New high-spinT=0 states are observed at 9720 keV (I π = 7+), 8602 keV (I = 6), and 6695 keV (I π = 7+). TheI π assignments to severalE x = 6–8 MeV states are revised and the role of two-particle excitations into thef-p shell is elucidated. A revised spectrum of 73 positive-parity,T = 0 states is compared to the predictions of shell-model calculations in thes-d basis space using the universals-d shell Hamiltonian.  相似文献   

8.
The electron-capture decay of228Pa to levels in228Th has been studied using mass-separated sources and high-resolutionγ-ray and conversion-electron spectroscopy. A level at 979.5 keV is assigned as 2+ member of a second excited Kπ=0+ band, with the 0+ band head at 938.6 keV. The 2+ and 3+ members of a second excited Kπ=2+ band at 1153.5 and 1200.5 keV, which decay by strongE0 transitions to the 969 keVγ-vibrational band, are confirmed. In addition we tentatively propose a Kπ=1+ band at 944 keV. The Kπ=0?, 1? and 2? members of the octupole quadruplet are confirmed, and theγ decay of these levels is analysed in an approach, in which the mixing of the octupole bands by the Coriolis interaction is taken into account. It is suggested that octupole correlations might be important for theE1 transition moments. A total of 29 levels is observed between ~1.4 and ~2.0 MeV, for which the nuclear structure, and the possible assignment to rotational bands, is unclear.  相似文献   

9.
The lifetimes τ=124±12, 6 ?2 +4 and 380±100 ps of theE x (I π )=3.46(8+), 2.92(6+) and 3.04(6?) MeV states, respectively, populated by the reaction76Ge(12C,α2n) were measured with the recoil distance method. In addition upper lifetime limits were obtained for nine states. The measured lifetimes and energies indicate a band crossing at aboutI π =8+, probably arising from the alignment of twog 9/2 neutrons. For the 3.04 MeV 6? state as a second member of a band built on the 2.65 MeV 4? state the measured lifetime points to a two-quasiparticle configuration. The positive-parity states have been discussed in the frame of the interacting boson approximation, nuclear field theory and the cranked shell model.  相似文献   

10.
28Si level scheme up to 14.5 MeV excitation energy is reevaluated using information from two preceding papers. It consists of approximately 250 levels which are almost completely characterized according to the quantum numbersI, π, T of the levels. The properties of positive-parity states are compared to the predictions of shell model calculations within the completes-d basis space using the unifieds-d shell Hamiltonian. A spectrum of 48 experimentalT=1 states between 9.3 and 16 MeV is reproduced with a rms deviation of only 150 keV. A calculation of radiative widths and γ-decay modes which uses free-nucleong-factors yields excellent agreement with experiment and confirms that quenching of M1 transitions is only marginal in28Si. The detailed shell model analysis of theT=0 spectrum is extended to the limiting energy whereT=1 wave function admixtures, not contained in the theory, become important experimentally. This happens at 6–8 MeV above the yrast state, depending on the spin value. Altogether it appears that a spectrum of 171 levels below 14.5 MeV, which have positive or unassigned parity, is almost completely accounted for by the model. Apparent intruder states from outside thes-d shell space are observed atE x =10 945 keV (I π=4+) and 12 860 keV (I π=6+) and are interpreted as members of aK π=0+ rotational band.  相似文献   

11.
The45Sc(α, p γ) reaction has been investigated atE α=11, 12 and 13MeV. Theγ-decay of 198 levels in48Ti up to 8,323 keV excitation energy has been observed. High-spin states were investigated by proton-γ ray angular correlation measurements atE=11 and 13MeV and by DSAM lifetime measurements atE=11 MeV. From the combined evidence spin (-parity) assignments were obtained for the levels atE x =8,323 keV (J= 10,8,6), 8,091(12, 10, 8, 6), 7,668(10, 8), 7,427(9, 7), 7,374(11, 9, 7), 6,906(10, 8, 6), 6,172(8+,6+), 6,102(10+,8+), 6,039(6), 6,034(9+, 7+), 5,630(7), 5,197(8+), 5,169(7+), 5,155(5), 4,404(5), 4,398(6+) and 4,046keV (5). Most of the ambiguous spin assignments become unique if the 8,091 keV level hasJ=12, an assumption which is favoured by its excitation function. The level spectrum thus obtained is well reproduced by shell model calculations in the pure (f 7/2)8 configuration space. Discrepancies exist in the reproduction ofγ-decay modes. The reason is found in low-lying high-spin intruder states which include the 7,427 and 8,323 keV levels. The spectrum of negative-parity states is understood qualitatively by a comparison with46Ti and42Ca.  相似文献   

12.
Particleγ-ray coincidences have been measured in the28Si (d,pγ) reaction at 6.5 and 7 MeV bombarding energy, in the26Mg (α,nγ) reaction at 12, 14 and 15 MeV, and in the27A1 (τ,pγ) reaction at 9 MeV. Theγ-decay has been observed for all bound states of29Si and for 56 unbound states up to 12,960 KeV excitation energy. Particleγ-ray angular correlations were measured in the28Si (d,pγ) reaction at 6.5 MeV and in the26Mg (α,nγ) reaction at 12 MeV. Spin (-parity) assignments or restrictions were obtained for nearly all bound states and some high-spin states above the binding energy. The assignment of mirror levels in29Si and29P has been extended to 8.2 MeV excitation energy. The excitation energies of 41 positive-parity states are reproduced by shell model calculations. The possible existence of aK π=5/2+ band with prolate deformation is discussed.  相似文献   

13.
The42Ca levels at 4,715 and 6,633 keV excitation energy have been investigated using the39 K(α,pγ reaction atE α=14 and 15 MeV. From particle-γ-ray angular correlations the spin assignmentsJ(4,715)=6, 4 andJ(6,633)=8, 6, 4 have been obtained. Lifetime measurements using the Doppler-shift attenuation method yieldedτ (4,715)=120±46 fs andτ(6,633)=52±21 fs. Both levels have positive parity and decay by enhancedE2 transitions. They are interpreted as theJ π=6+ and 8+ members, respectively, of theK π=0+ rotational band which has theE x =1,837, 2,423 and 3,250 keV states as further members. The enhancement of inbandE2 transitions is 50 ?16 +35 W.u. (6→4) and 63 W.u. (8→6) respectively. The intrinsic quadrupole moments which have been derived on the basis of the coexistence model, areQ 0=1.13?0.16/+0.37b(8→6) andQ 0=1.36±0.25b(6→4), respectively. TheJ π=10+ member of the rotational band has possibly been observed as a level at 8,856±5 keV excitation energy.  相似文献   

14.
The nucleus193Pb was populated via the168Er(30Si,5n) reaction at a beam energy of 159 MeV and studied with the EUROGAM II spectrometer. Five new dipoleΔI=1 cascades have been found. These structures have been connected to the level scheme which has been considerably extended up to a spin of 61/2? and an excitation energy of about 8 MeV. Angular distribution coefficients,α 2, have been measured and confirm the dipole character of the in-band transitions. B(M1)/B(E2) ratios have been extracted for the two most intense cascades. The193Pb dipole bands are discussed in comparison with those known in odd lead isotopic series and the structure of the band heads is analyzed in terms of microscopic HF-BCS calculations. The proposed configurations are based on a high-K two quasiproton excitation,π([505]9/2??[606]13/2+) K =11?, coupled to one or three rotation aligned quasineutrons involving thei 13/2,p 3/2,f 5/2 and/orh 9/2 subshells. The main difference, compared with the heavier lead isotopes, is the presence of largeΩ orbitals from theν (i 13/2) shell near the Fermi surface which are responsible for the increasing band-head spin as A decreases.  相似文献   

15.
In-beamγ-ray and conversion electron measurements with (α, xn) reactions have established the145Sm highspin states up toI π=25/2+ at 3.5 MeV excitation. A shell model analysis using empirical two- and one-body energies from neighbouring nuclei classifies the low-lying odd-parity levels as 3-quasiparticle states formed by the144Sm two-proton-hole excitations and thef 7/2 valence neutron. The higher-lying positive-parity states involve particle-hole core excitations with one proton inh 11/2.  相似文献   

16.
The double charge exchange reaction3He(K?,π +)Xn was studied at 870 MeV/c. In the X missing mass range below the sigma-nucleon production threshold (2130 MeV/c2), events were detected which can be attributed to the two-nucleon process pp(K?,π +)λn. This reaction and mass range also offers good prospects for finding theI=1/2,l=1 (1 P1) spin-singlet dibaryon Ds suggested as the lowest massS=?1 dibaryon in the MIT Bag Model. Although the existence of the Ds is not ruled out by the present data, there is no need to invoke such an object to account for the observed events below σ production threshold. We show that the cross section level for these events is compatible with a dominant two-nucleon mechanism K?p→π 0λ,π 0p →π +n. We also offer an interpretation of the recent (K?,K+) data on nuclear targets from Iijimaet al., which display a broad peak centered around a K+ momentum of 600 MeV/c. We find that the two-nucleon mechanism K?N →πY,πN→K+Y produces cross sections which are at least an order of magnitude smaller than those observed, and we suggest that the one nucleon process K?p →Φλ, followed by the decayΦ → K+K?, accounts for the data.  相似文献   

17.
Deformation parameters of the positive parity yrast band and negative parity bands in83Zr are deduced from lifetimes andE2/M1 mixing ratios. Lifetimes of high spin states have been determined from recoil distance Doppler shift and Doppler shift attenuation measurements using the54Fe(32S,2pnγ) 83Zr reaction. Ten lifetimes and five lifetimes limits were determined. The positive parity band, built on theg 9/2 K=5/2 orbital has an average deformation ¦β 2¦=0.28(2), and shows a reduction ofE2 transition strengths in the observed backbend region at Iπ≈21/2+. In contrast, theE2 strengths in the negative parity states show a steady increase up to Iπ≈=15/2?. These states are more strongly deformed than the positive parity states (¦β 2¦=0.33(3)). TheE2/M1 mixing ratios show that the negative parity band hasK=3/2 and is prolate, and favour oblate deformation for the positive parity yrast band. In theK=1/2? band theE2 strength of the 7/2?→3/2? transition yields a deformation ¦β 2¦=0.26(5). The band structure is compared with calculations within the Hartree-Fock Bogoliubov cranking model.  相似文献   

18.
Theγ-decay of levels in21Ne up to 10 MeV excitation energy has been investigated byn — γ coincidence measurements initiated with the18O(α, nγ) reaction at 12, 13, 14.5 and 15.4 MeV bombarding energies. Spin(-parity) assignments of excited states are obtained by combining then — γ angular correlation measurements performed atE α=11, 11.82 and 13.6 MeV with a consideration of lifetimes, neutron penetrabilities of the unbound states, and information from the mirror nucleus21Na. The resulting values of Ex[keV]?J π are as follows: 4525-5+, 4686-3+, 5431-7+, 5549-3+, 5819-7?, 6175-7+, 6268-9+, 6550-9, 6639-9, 7006-7+, 7041-9, 7356-7 or 9, 7422-11(?), 7648-7+, 7981-11 or (7+), 8154-9, 8240-11, 8664-9? or 11 or 13?, 9401-13?, 9867-13? or 15+, 9941-13? or 15 or 17+. The assignment of mirror levels in21Ne —21Na has been extended to the 6175 keV level of21Ne. Excitation energies, electromagnetic properties, Gamow?Teller matrix elements and spectroscopic factors of positive parity states are compared with the results of shell-model calculations which employ a unifieds—d shell Hamiltonian and the unrestricted configuration space of the 0d 5/2 —1s 1/2—0d3/2 shell. Collective properties contained in shell model wave functions are explored up to the termination of bands atJ=17/2 or 19/2. The spectrum of intruder states in21Ne is observed to begin with a 5628 keV,J π=7/2+ state. The 7422, 8664 and 9401 keV levels are assigned as members of previously established negative-parity rotational bands.  相似文献   

19.
Excited states of73Se have been investigated up to spin, 21/2 using techniques of in-beamγ-ray spectroscopy in connection with the70Ge(α, n) reaction. Mean lifetimes of 12 levels have been determined applying Doppler-shift andγ-RF-methods. Five different bands have been identified that reflect a variety of different excitation modes. The decoupled 9/2+ band is likely to correspond to an oblate deformation while the 5/2+ band is interpreted as a strongly coupled prolate band built on the Nilsson configuration [422] 5/2+. The 3/2? band is a strongly coupled band built on the [301] 3/2} configuration.Nuclear reactions:70Ge(α,n),E=14, 16, 18, 19, 20MeV; measuredE γ,I γ,σ(E γ,θ),γγ-coin, linear polarization, DSA,γ(t).75Se deduced levels,I, π, τ, δ(E2/M1), B(σλ). Enriched targets, Ge detectors.  相似文献   

20.
The ground state rotational bands in233U and239Pu were investigated in (α, 3n) reactions. Conversion electrons were measured with an iron free orange spectrometer in order to suppress the background from fission. Levels up toI π=33/2+ of theK=5/2 band in233U andI π=31/2+ of theK=1/2 band in239Pu were identified ine ?γ coincidence measurements. The level energies of both rotational bands can be well described up to the highest observed spins by a two-parameter angular velocity expansion. The electromagnetic properties of theK=1/2 band in239Pu are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号