首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 553 毫秒
1.
高光谱技术诊断马铃薯叶片晚疫病的研究   总被引:2,自引:0,他引:2  
鉴于晚疫病可对马铃薯造成毁灭性灾害,对受晚疫病胁迫的马铃薯叶片进行了高光谱图像特征研究。旨在探索马铃薯叶片的高光谱图象特征与晚疫病害程度的关联,以实现准确、快速、无损的晚疫病诊断。采用60片马铃薯叶片,对其中48片采用离体方式接种晚疫病菌,所剩12片作为对照,染病前后连续观测7天,得到染病和健康样本。健康和染病样本按照染病时间和染病程度不同采用374~1 018 nm波段范围的可成像高光谱仪分别采样,基于ENVI软件处理平台提取图像中感兴趣区的光谱信息,并采用移动平均平滑、导数处理、光谱变换、基线变换等预处理方法提高信噪比,建立了最小二乘支持向量机(LS-SVM)的识别模型。9个模型中,基于原始光谱(不预处理)和光谱变换预处理后的数据所建立的模型预测效果最好,识别率均达到了94.87%。表明基于高光谱成像技术可以实现晚疫病胁迫下马铃薯病害程度的有效区分。  相似文献   

2.
柑橘叶片水分亏缺是影响柑橘生长发育的重要因素之一,为研究水分胁迫对柑橘含水率的影响,利用高光谱快速无损检测柑橘叶片含水率,并应用伪彩色处理实现含水率可视化。收集100片柑橘叶片,使用烘干法得到鲜叶和烘干叶片一共500个不同梯度含水率的数据样本,将样本按7∶3的比例划分为训练集(350个样本)和测试集(150个样本),使用决定系数(R2)和均方根误差(RMSE)来评估模型预测的好坏。采用卷积神经网络(CNN)对高光谱数据进行预测,CNN模型使用一维卷积核,一共三层卷积池化层,使用RELU激活函数激活,输出层采用linear激活函数回归预测,使用nadam算法对模型进行优化更新,迭代次数为1 000次;将原始光谱数据和SG,MSC和SNV三种预处理后的光谱数据,与全波段、CARS筛选的特征波段、PCA提取的特征波段组合,导入CNN模型,确定最佳模型为原始光谱数据的CARS-CNN,训练集的R2c和RMSEC分别为0.967 9和0.016 3,测试集的R2v和RMSEV分别为0.947 0和0.021 4;原始光谱数据的全波段CNN模型效果其次,训练集的R2c和RMSEC分别为0.934 3和0.024 9,测试集的R2v和RMSEV分别为0.915 9和0.028 6。对比了不同预处理方式和特征波长选择的支持向量机回归模型(SVR)、偏最小二乘法回归模型(PLSR)、随机森林模型(RF)组合的最佳结果,将最佳组合模型(原始光谱数据+CARS+PLSR,SNV+PCA+RF,SNV+PCA+SVR)与原始光谱数据的CARS-CNN对比,结果表明,依然是原始光谱数据的CARS-CNN模型预测效果最佳。相较于其他的模型,CARS-CNN模型经过CARS筛选特征波段和卷积核进一步提取特征后,预测精度远高于SVR,PLSR和RF模型。选择训练好的CARS-CNN模型,将高光谱图片导入到模型中,计算每个像素点的含水率,得到伪彩色图像,能够可视化叶片的含水率分布情况。研究结果为柑橘叶片水分含量提供了更快速、更直观、更全面的评估,为研究柑橘叶片水分胁迫提供了依据,为智能灌溉决策的优化提供了参考。  相似文献   

3.
快速、准确检测酒醅酸度,可显著提高白酒出酒率和成品酒品质。近红外光谱(NIR)提供了分子的倍频和合频,即有机物中含氢基团(C—H、 N—H、 O—H)的振动信息,通常用于样品中含氢化合物的定性和定量分析。采用NIR能简单、迅速的测定酒醅酸度,克服了传统化学分析方法检测周期长、试剂消耗大、人为误差等不足。由于NIR是一种间接分析技术,如何建立校正模型是准确检测酒醅酸度的关键。作为深度学习中的典型模型,卷积神经网络(CNN)具有局部区域连接,分享权值等优点,不仅能从复杂的光谱数据中提取关键特征,还能减少网络模型的复杂度。因此,提出基于CNN和NIR的酒醅酸度定量分析方法,以某酒企生产线中采集的545个酒醅样本光谱数据作为研究对象,采用标准正态变换(SNV)、 Savitzky-Golay (SG)滤波和一阶求导(1stD)三种算法相结合对原始光谱进行预处理;利用无信息变量消除法(UVE)选择光谱数据的特征波长;使用CNN建立酒醅酸度模型。结果表明:(1)对光谱数据进行预处理后,消除了原始光谱中的基线偏移,噪声等问题;经过预处理后的光谱数据模型相较于原始光谱建模,预测集...  相似文献   

4.
多元散射校正预处理波段对近红外光谱定标模型的影响   总被引:5,自引:0,他引:5  
利用近红外光谱对非均匀样品进行分析时,所得样品光谱中包含由光散射导致的干扰信息,通常需要借助多元散射校正算法(multiple scattering correction, MSC)对光谱进行预处理。由于不同波段光谱中所包含的散射信息、噪声水平、基线漂移程度等存在差异,利用MSC方法对光谱进行预处理时,基于不同波段的光谱数据会得到不同的校正结果,进而影响所得定标模型的可靠性。以60个全麦粉样品为研究对象,确定定标区间后,对包含定标区间的不同波段的原始光谱分别进行MSC处理,并利用固定区间内的光谱数据结合偏最小二乘回归(partial least square regression, PLSR)方法建立分析样品中蛋白质含量的定标模型,研究了MSC光谱预处理波段对定标模型的影响,并对MSC光谱预处理波段进行了优化,使定标模型的相关系数由0.96提高到0.98,交互验证均方根误差(root mean squares error of cross validation, RMSECV)由0.37%降低到0.32%。结果表明:利用MSC方法对样品光谱预处理时,光谱预处理波段会影响多元散射校正对光谱中非化学吸收信息的校正能力,确定合适的预处理波段是获得可靠分析结果的一个前提条件。  相似文献   

5.
非成像高光谱数据的特点为树种的精细识别提供了可能.非成像高光谱数据的多波段特性,使得利用数据间的微小差异来进行树种的识别分类研究成为可能.该文利用光谱相关匹配(Spectral correlation matching,SCM)方法来对树种进行识别分类,分别采用均值平滑法、中值平滑法、小波包变换对高光谱数据进行预处理及识别分类研究.结果表明,经过数据平滑预处理,可以有效地去除噪声,提高叶片高光谱数据的树种分类的精度.小波分析能有效的去除光谱中的噪声信息,保留光谱中的有效信息.在小波包变换的基础上,经过中值滤波数据预处理之后的分类精度高于均值滤波数据预处理后的分类精度.  相似文献   

6.
棉花精量播种技术目前已经在新疆兵团全面推广,该技术能精确实现一穴一粒的农艺技术指标,但是也对高质量棉种的筛选提出了更高的要求。为了避免播种往年活力不足的棉种而导致发芽率降低的问题,结合机器学习和近红外(NIR)高光谱成像技术(HSI)进行棉种年份精确鉴别,实现棉种的快速无损筛选。采集2016年—2019年近四年外观无明显差异的棉种各360粒,共1 440粒棉种(按照3∶1∶1划分训练集、验证集和测试集)作为样本,按照每批60粒采集915~1 698 nm范围的棉种高光谱图像,去除首尾两端噪声大的光谱,保留1 002~1 602 nm范围的光谱为原始数据。利用Savitzky-Golay(SG)平滑算法对光谱进行预处理,采用主成分载荷方法(PCA-loading)选取13个特征波段,基于全部光谱数据和特征波段(±10 nm)数据建立逻辑回归(LR)、偏最小二乘判别分析(PLS-DA)、支持向量机(SVM)、循环神经网络(RNN)、长短记忆网络(LSTM)和卷积神经网络(CNN)六种分类模型。使用全光谱数据建模时,六种分类模型在测试集上的鉴别准确率分别为96.27%,98.98%,99.32%,96.95%,97.63%和100%,其中CNN和SVM模型取得了较好的结果;使用特征光谱数据建模时,六种分类模型在测试集上的鉴别精度分别为93.56%,97.29%,98.30%,95.25%,94.24%和99.66%,其中CNN和SVM模型仍有较好的分类结果。结果表明,使用全光谱数据建模时,六种分类模型都可以实现较高精度的棉种年份鉴别,使用特征光谱数据建模时CNN和SVM模型的鉴别精度仍可达到98%;其中深度学习方法优于传统机器学习方法,但是传统机器学习方法仍能保持较好的鉴别准确率。因此,结合近红外高光谱成像技术和机器学习方法能够实现棉种年份的高精度鉴别,为棉花精量播种过程中的优质棉种选种技术提供理论依据和方法。  相似文献   

7.
化学需氧量(COD)是水体有机污染的一项重要指标,如何快速准确检测水体的COD含量尤为重要。机器学习在水质反演领域应用日益增多,并取得了较多的研究成果,高光谱遥感具有光谱空间分辨率高、成像通道多等优势,使其在水体COD反演方面有着极大的潜力。利用不同的高光谱预处理方法对原始高光谱数据进行处理,并利用处理前后的高光谱数据对比研究了不同机器学习模型、不同高光谱预处理方法对水体COD的反演性能。首先利用ZK-UVIR-I型原位光谱水质在线监测仪在扬州宝带河实地收集了1 548组COD和对应的高光谱数据(400~1 000 nm)样本,为降低光谱噪音干扰以及消除光谱散射影响,分别使用Savitzky-Golay(SG)平滑、多元散射校正数据(MSC)以及SG平滑结合MSC对原始光谱进行预处理。其次,将样本集随机划分为训练集和测试集,其中训练集占比80%,测试集占比20%。对预处理后的训练集全波段光谱基于线性回归、随机森林(random forest)、AdaBoost、XGBoost四种机器学习方法建立COD高光谱反演模型,并选取了决定系数(R2)、均方根误差(RMSE)、相对分析误差(RPD)三种指标在测试集数据中评估高光谱反演模型的精度。结果表明,随机森林、AdaBoost、XGBoost均优于线性回归,无论光谱处理与否,通过XGBoost建立的反演模型预测能力均为最佳,其中使用XGBoost对经过SG平滑和MSC处理后的光谱数据进行建模的反演模型精度最高,其R2达到0.92,RMSE为7.1 mg·L-1,RPD为3.4。考虑到原始光谱可能存在冗余,通过主成分分析法(PCA)对经过SG平滑和MSC处理后的光谱进行降维,并选取累计贡献率达到95%的前十个主成分作为模型的输入变量。通过XGBoost建立反演模型,结果表明经过PCA后的反演模型不仅精度有所上升,RPD达到3.8,而且模型的训练时间也由72 s缩短到2.9 s。以上研究可为该水域及类似水域的高光谱水质反演模型的建立提供新的方法及思路。  相似文献   

8.
针对油菜籽经过核辐照处理后其光谱反射特性会发生改变的特点,提出了应用可见/近红外光谱技术进行油菜籽的快速无损鉴别。利用偏最小二乘法和BP神经网络建立鉴别模型,并比较了不同光谱预处理方法、主成分数据变换方式及隐含层节点数对模型预测结果的影响。实验采用五种剂量辐照(50, 100, 150, 200Gy和不经核辐照处理)的油菜籽共135个样本进行建模,49个进行预测。结果显示,最优模型是原始光谱数据先经过中值滤波平滑法、附加散射校正及一阶求导法预处理。经PLS方法提取6个主成分经自然对数变换后,选取神经网络隐含层结点数为4个或9个。最优模型对是否经过核辐照处理的样本识别率达100%,对核辐照剂量预测精度为85.71%, 说明提出的方法可以用于评估核辐照处理对油菜籽光谱特性产生的明显影响。  相似文献   

9.
柑桔黄龙病的可见-近红外光谱特征   总被引:4,自引:0,他引:4  
柑桔黄龙病是一种以木虱为载体的细菌病原,目前还没有行之有效的治疗方法,对世界柑桔产业构成了严重的威胁。探索快速检测柑桔黄龙病的方法,对该病的诊断、评估及进一步的控制都具有重要意义。该研究采用了快速、无损的光谱方法对该病害特征进行初步探索。实验针对健康及染病植株的叶片及冠层,分别在实验室条件及田间环境下测量了其可见-近红外光谱反射率,以分析寻找二者的光谱差异。对原始光谱数据进行了平滑、聚类平均等预处理,并求取了一阶微分以确定其红边位置(red edge position, REP)。为了应对一阶微分在REP处的多个波峰现象,采用了线性外插值法及拉格朗日插值法量化REP。研究结果显示,健康及染病样本的反射率在可见光、近红外具有明显的差异。相比于健康样本,染病样本因其呈现的黄化现象,使其反射率在可见光区较高;又因黄龙病菌会明显阻碍叶片对水分的吸收而使其反射率在近红外较低。REP同样显示了潜在的区分能力,其明显随着染病程度的加深逐渐向红波段移动。在染病程度差异较大的数据集中,REP平均值相差达20 nm;而在染病程度差异较小的数据集中,阈值分割法的分类精度也高达90%以上,且线性外插值法的分类精度略高于拉格朗日插值法。本研究成果为利用光谱技术快速无损检测柑桔黄龙病提供了可靠的理论依据。  相似文献   

10.
微分算法的艾比湖湿地自然保护区土壤有机质多光谱建模   总被引:2,自引:0,他引:2  
针对以往利用高光谱数据来来反演土壤有机质(SOM)的可行性与可靠性,结合微分处理对光谱数据信息提取的高效性,提出了直接对多光谱遥感影像进行微分处理就可得出SOM建模研究,旨在为今后SOM速测提供参考。采用Landsat 8_OLI 多光谱遥感影像数据,对多光谱遥感影像进行辐射定标、几何校正、大气校正、镶嵌和裁剪,运用IDL软件对影像进行一阶微分处理和二阶微分处理,发现一阶微分图像能够更好地表达地物的真实情况,更好地区别水体与土壤。原始遥感影像包含大量的信息其中还包括噪声,通过微分处理后的遥感影像剔出了原始影像中反射率值突兀变化的部分。在研究区采用五点法采集土壤样品。室内实验用重铬酸钾氧化-容量法测得SOM数据。多光谱数据结合地面实测SOM数据,分析SOM与多光谱数据反射率的关系,发现一阶微分处理后的遥感数据与SOM含量的相关性存在敏感波段,说明一阶微分处理可以将原始遥感图像数据在多光谱范围内的一些隐含的土壤有机质信息释放出来。选取相关性高的数据建立基于原始遥感数据、一阶微分数据、二阶微分数据的单波段多光谱线性模型和多波段多光谱线性模型,选取最优模型来估算和反演土壤有机质含量。结论如下:(1)通过对原始影像进行微分处理发现,微分处理后的影像变化明显,一阶微分处理的影像噪声降低,更加突出了影像中土壤有机质隐藏的信息。二阶微分处理的影像抑制了土壤有机质信息。(2)原始遥感影像各波段数据对土壤有机质含量的相关性较低,一阶微分处理后的遥感影像数据反映出土壤有机质敏感波段即部分波段数据相关性明显高于原始数据,二阶微分处理后的遥感影像各波段数据对土壤有机质含量的相关性较弱。(3)多波段建模效果要优于单波段建模;一阶微分多波段模型预测精度最优,其模型的决定系数和模型拟合的决定系数分别为0.898和0.854,该模型对估算研究区内的SOM含量效果较好;综合比较了单波段模型和多波段模型的拟合精度,发现无论在单波段模型还是多波段模型一阶微分处理后的模型都具有更好的预测能力。(4)基于一阶微分多波段模型对研究区SOM进行反演,反演结果与实际情况相符合,对干旱区SOM含量制图提供了切实可行的方法和参考。  相似文献   

11.
针对马铃薯空心病的难以检测问题,提出了一种基于半透射高光谱成像技术结合支持向量机(support vector machine,SVM)的马铃薯空心病无损检测方法。选取224个马铃薯样本(合格149个,空心75个)作为研究对象,搭建了马铃薯半透射高光谱图像采集系统,采集了马铃薯样本半透射高光谱图像(390~1 040 nm),对感兴趣区域内的光谱进行平均和光谱特征分析。采用变量标准化(normalize)对原始光谱进行光谱预处理,建立了全波段的SVM判别模型,模型对测试集样本的识别准确率仅为87.5%。为了提高模型性能,采用竞争性自适应重加权算法(competitive adaptive reweighed sampling algorithm, CARS)结合连续投影算法(successive projection algorithm, SPA)对光谱全波段520个变量进行变量选择,最终确定了8个光谱特征变量(454,601,639,664,748,827,874和936 nm),所选8个光谱变量建立的SVM模型对马铃薯测试集的识别率为94.64%。分别采用人工鱼群算法(artificial fish swarm algorithm,AFSA)、遗传算法(genetic algorithm,GA)和网格搜索法(grid search algorithm)对SVM模型的惩罚参数c和核参数g进行优化。经过建模比较分析,确定AFSA为最优优化算法,最优模型参数为c=10.659 1,g=0.349 7,确定AFSA-SVM模型为马铃薯空心病的最优识别模型,该模型总体识别率达到100%。试验结果表明:基于半透射高光谱成像技术结合CARS-SPA与AFSA-SVM方法能够对马铃薯空心病进行准确的检测,也为马铃薯空心病的快速无损检测提供技术支持。  相似文献   

12.
高光谱图像具有数百个连续、狭窄的光谱带,光谱范围跨越可见光到红外光,可提供地物的精细光谱属性,对于地物材质和属性的识别分类具有重要应用价值。针对感兴趣目标选择有限的光谱波段进行传输和处理,对于提升高光谱数据处理时效性、以及设计面向特定应用的实用化光谱仪都具有重要意义。而如何结合目标特征选择最优波段成为在提升处理效率的同时保证目标识别或分类精度的必然要求。因此如何从数以百计维度的高光谱图像中选择出具有较好分类识别能力的波段子集是急需解决的问题。提出基于改进粒子群优化算法的高光谱波段选择方法,该方法区别于传统的粒子群优化算法,引入 “概率突跳特性”,并设定新解的淘汰机制,将“停滞”的新解进行淘汰,提高了算法的全局寻优性能。然后基于目标光谱特征采用了最优波段选择的优化目标函数,通过改进的粒子群优化算法求解目标函数,并将选定的波段子集反馈到支持向量机(SVM)中执行分类应用。采用两个标准的高光谱数据集(Indian Pines, Salinas)对选择出的波段子集进行分类测试,结果表明该方法相较于现有方法具有较高的分类精度,在几种方法中,传统的粒子群算法筛选出的波段效果最差;该算法筛选出的波段的分类精度最好,两个数据集的分类精度分别可以达到98.141 4%和99.084 8%。  相似文献   

13.
利用中红外光谱和化学计量学实现了对乙醇柴油各项性能指标的定量分析。实验样品96个,为32种不同浓度的乙醇柴油溶液。采用S-G平滑、MSC、微分处理(1stD和2ndD)、SNV等四种方法对光谱数据进行预处理,并结合八种波段筛选方法(UVE,CARS,SPA,RPLS,UVE-SPA,UVE-CARS,SPA-CARS,UVE-SPA-CARS)对乙醇柴油MIR光谱数据进行处理,分别建立乙醇柴油密度、粘度、乙醇含量的PLSR模型,得出以下主要结论:综合比较八种变量筛选方法,发现UVE-SPA-CARS-PLS对乙醇含量的建模效果最好,模型预测集的Rp和RMSEP分别为0.978 1和0.825 5。变量筛选较原始光谱建立的模型来说,不仅模型输入数量减少,预测效果也有所提高。  相似文献   

14.
应用激光诱导击穿光谱(LIBS)对脐橙中Cu元素进行快速检测,并结合偏最小二乘法(PLS)进行定量分析,探索光谱数据预处理方法对模型检测精度的影响。针对实验室污染处理后的52个赣南脐橙样品的光谱数据,进行不同数据平滑、均值中心化和标准正态变量变换三种预处理方法。然后选择包含Cu特征谱线的319~338 nm波段进行PLS建模,对比分析了模型的主要评价指标回归系数(r)、交互验证均方根误差(RMSECV)和预测均方根误差(RMSEP)。采用13点平滑、均值中心化的PLS模型3个指标分别达到了0.992 8,3.43和3.4,模型的平均预测相对误差仅为5.55%,即采用该前处理方法模型的校准质量和预测效果都最好。选择合适的数据前处理方法能有效提高LIBS检测果蔬产品PLS定量模型的预测精度,为果蔬产品LIBS快速精准检测提供了新方法。  相似文献   

15.
水是生命之源,作为人类生活的必需品,水质的优劣直接关系到人们的健康生活。目前,关于水质COD在线检测方法的研究主要集中在光谱数据预处理和光谱特征提取,而针对光谱数据建模方法的研究较少。卷积神经网络(CNN)作为目前深度学习领域应用最广泛的网络模型,具有强大的特征提取和特征映射能力,本文将CNN与紫外-可见光谱分析法相结合,建立了基于CNN的水质COD紫外-可见光谱预测模型。模型使用Savitzky-Golay平滑滤波方法去除光谱噪声,光谱输入卷积层提取光谱数据特征、池化层降维、全连接层映射全局特征,通过ReLU和Adam优化方法,从而得到模型的预测值。通过实验发现, CNN模型具有较强的水质COD预测能力,具有较高的预测精度和回归拟合优度,通过与BP, PCA-BP, PLSR和RF等模型比较后发现, CNN模型的预测样本的RMSEP和MAE最小,R~2最大,模型拟合效果最优。在与训练样本的模型效果评价对比后发现,模型具有较强的泛化能力。针对吸收光谱的波峰偏移对预测结果所造成的预测结果不准确的问题,作者还提出了一种基于CNN的分类回归模型卷积神经网络增强模型(CNNs),去噪后的光谱数据通过CNN分类模型按照吸收波峰的不同特征分为三类,分别输入对应CNN回归模型进行预测。实验结果表明,分段式CNNs模型比整体式CNN模型的拟合效果更好,预测精度更高,R~2达到0.999 1,测试样本的MAE和RMSEP分别为2.314 3和3.874 5,比CNN分别下降了25.9%和21.33%,效果显著。通过对预测模型的性能测试,计算得出检出限为0.28mg·L~(-1),测量范围为2.8~500mg·L~(-1)。本文创新的将卷积神经网络与光谱分析方法相结合,为光谱分析方法在水质COD吸收光谱建模的应用开拓了新思路。  相似文献   

16.
拉曼光谱因具有简单、快速及无损等特点,非常适合矿石的分类与鉴别。拉曼光谱模型拟合分类方法无需构建参考光谱库且避免了复杂的逐项光谱匹配,具有明显的优势。然而,已有的基于机器学习及深度学习的矿石拉曼光谱分类研究所采用的学习模型比较单一,缺乏具有参考意义的综合比较。对基于机器学习及深度学习的矿石拉曼光谱模型拟合分类方法进行综合评估验证,对比了KNN, XGBoost, SVM, RF四种传统机器学习方法和CNN, DNN, RNN三种深度学习模型在RRUFF矿物拉曼光谱数据集上的分类效果,验证了4种数据预处理方法和样本量对模型分类效果的影响。为提升机器学习模型的分类性能,本文还提出了一种拉曼光谱强度曲率的数据预处理方法,对经基线矫正后的拉曼光谱序列强度计算曲率作为构造特征,使模型更有效的提取出拉曼光谱的特征峰位置。实验结论:数据预处理对提升机器学习模型的分类性能效果明显,而对深度学习模型不敏感;样本量为影响模型分类效果的关键因素,当样本量较大时,深度学习模型的分类效果优于传统的机器学习模型;对于微小样本,深度学习模型难以发挥其优势,而辅以预处理的机器学习具有更优的分类性能。  相似文献   

17.
应用近红外光谱技术对子宫内膜组织病理切片进行快速无损检测。收集了154样品光谱,其中正常样本的个数36个,增生的60个,癌变的58个。由于原始光谱中包含大量干扰信息,所以光谱预处理方法和波段选取的方法在近红外光谱分析中占有非常重要的地。利用多种预处理方法,包括一阶导数、多元散射校正、多项式最小二乘拟合求导、标准归一化、平滑、移动窗口中值滤波,对样品光谱进行了预处理。利用标准偏差谱来选取最优波段,选取的最优波段范围为4 000~6 000 cm-1。然后用处理后的光谱数据进行主成分分析,分类准确率达到100%。研究结果表明近红外光谱技术结合化学计量学方法可以作为一种癌症快速诊断的新技术,对于癌症的早期诊断和癌症组织的恶化过程研究具有重要的意义。  相似文献   

18.
针对马铃薯空心病的难以检测问题, 提出了一种基于半透射高光谱成像技术结合支持向量机(support vector machine, SVM)的马铃薯空心病无损检测方法。选取224个马铃薯样本(合格149个, 空心75个)作为研究对象, 搭建了马铃薯半透射高光谱图像采集系统, 采集了马铃薯样本半透射高光谱图像(390~1 040 nm), 对感兴趣区域内的光谱进行平均和光谱特征分析。采用变量标准化(normalize)对原始光谱进行光谱预处理, 建立了全波段的SVM判别模型, 模型对测试集样本的识别准确率仅为87.5%。为了提高模型性能, 采用竞争性自适应重加权算法(competitive adaptive reweighed sampling algorithm, CARS)结合连续投影算法(successive projection algorithm, SPA)对光谱全波段520个变量进行变量选择, 最终确定了8个光谱特征变量(454, 601, 639, 664, 748, 827, 874和936 nm), 所选8个光谱变量建立的SVM模型对马铃薯测试集的识别率为94.64%。分别采用人工鱼群算法(artificial fish swarm algorithm, AFSA)、遗传算法(genetic algorithm, GA)和网格搜索法(grid search algorithm)对SVM模型的惩罚参数c和核参数g进行优化。经过建模比较分析, 确定AFSA为最优优化算法, 最优模型参数为c=10.659 1, g=0.349 7, 确定AFSA-SVM模型为马铃薯空心病的最优识别模型, 该模型总体识别率达到100%。试验结果表明: 基于半透射高光谱成像技术结合CARS-SPA与AFSA-SVM方法能够对马铃薯空心病进行准确的检测, 也为马铃薯空心病的快速无损检测提供技术支持。  相似文献   

19.
乙醇汽油是一种新型清洁燃料,燃料乙醇在乙醇汽油中的含量会影响发动机的性能。为了确保发动机的工作可靠性,需要对乙醇汽油中的乙醇含量进行快速精准检测。本文使用中红外光谱技术对采集到的乙醇汽油的光谱数据进行定量分析。首先对原始光谱数据使用多元散射校正、基线校正、一阶导数、二阶导数等预处理方法进行预处理。然后利用ELM、LSSVM、PLS对乙醇汽油中的乙醇含量建立预测模型,通过比较3种建模方法对乙醇含量的预测能力发现,PLS方法的精度比其余两种方法更高。模型决定因子R2为0.958,预测均方误差RMSEP为1.479%(V/V,体积比)。中红外光谱技术对乙醇汽油乙醇含量的快速准确检测提供了新的思路。  相似文献   

20.
拉曼光谱检测方法依赖于化学计量学算法,深度学习是当下最炙手可热的方向,可应用于拉曼光谱进行建模。但是深度学习需要大样本进行训练,而拉曼光谱采集受制于器材和人力成本,获取大批量的样本需要更大成本,且易受荧光等因素干扰,这些问题都制约了将深度学习应用于拉曼光谱。针对以上问题,通过引入深度卷积生成对抗网络(DCGAN)提取拉曼光谱内部特征,对抗生成新的拉曼光谱,从而达到扩充数据集目的。同时和另一个扩充数据集的方法--偏移法进行对比,证明DCGAN的可靠性。设计生成光谱选取标准,选取高相似性的光谱填充数据集,为深度学习在拉曼光谱中的应用奠定基础。为了验证生成的光谱比原始光谱有更好的适用性,设计四组实验:(1)使用原始拉曼光谱输入到SVM进行分类,得到51.92%的分类准确率;(2)使用原始拉曼光谱输入到CNN进行分类,得到75.00%的分类准确率;(3)采用偏移法生成光谱,输入到CNN里进行分类,得到91.85%的分类准确率;(4)使用DCGAN生成光谱,输入到CNN里进行分类,得到98.52%分类准确率。实验结果表明,DCGAN能在只有少量拉曼光谱的情况下,通过对抗学习得到较好的生成光谱,且生成的光谱相比原光谱更加清晰,减少了可能的干扰因素,具有光谱预处理效果。通过DCGAN对抗生成大量高质量的数据填充到原有拉曼光谱数据集,扩充数据集的样本量,使得深度学习模型能够得到更好的训练,从而提高模型的准确率。该研究为深度学习方法应用于拉曼光谱分析技术提出了一个可行的方案。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号