首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The conformational landscape of N-acetylcysteine (NAC) has been investigated by a combined experimental matrix-isolation FT-IR and theoretical methodology. This combination is a powerful tool to study the conformational behavior of relatively small molecules. Geometry optimizations at the HF/3-21 level resulted in 438 different geometries with an energy difference smaller than 22 kJ mol−1. Among these, six conformations were detected with a relative energy difference smaller than 10 kJ mol−1 at the DFT(B3LYP)/6-31++G∗∗ level of theory. These were finally subjected to MP2/6-31++G∗∗ optimizations which resulted in five minima. The vibrational and thermodynamical properties of these conformations were calculated at both the DFT and MP2 methodologies. Experimentally NAC was isolated in an argon matrix at 16 K after being sublimated at 323 K. The most stable MP2 form appeared to be dominant in the experimental spectra but the presence of three other conformations with ΔEMP2 < 10 kJ mol−1 was also demonstrated. The experimentally observed abundance of the H-bond containing conformations appeared to be in good accordance with the predicted MP2 value.  相似文献   

2.
The far-infrared and middle-infrared emission spectra of deuterated water vapour were measured at temperatures 1370, 1520, and 1940 K in the ranges 320-860 and 1750-3400 cm−1. The measurements were performed in an alumina cell with an effective length of hot gas of about 50 cm. More than 3550 new measured lines for the D216O molecule corresponding to transitions from highly excited rotational levels of the (0 2 0), (1 0 0), and (0 0 1) vibrational states are reported. These new lines correspond to rotational states with higher values of the rotational quantum numbers compared to previously published determinations: Jmax = 29 and Ka(max) = 22 for the (0 2 0) state, Jmax = 29 and Ka(max) = 25 for the (1 0 0) state, and Jmax = 30 and Ka(max) = 23 for the (0 0 1) state. The extended set of 1987 experimental rotational energy levels for the (0 2 0), (1 0 0), and (0 0 1) vibration states including all previously available data has been determined. For the data reduction we used the generating function model. The root mean square (RMS) deviation between observed and calculated values is 0.004 cm−1 for 1952 rovibrational levels of all three vibration states. A comparison of the observed energy levels with the best available values from the literature and with the global predictions from molecular electronic potential energy surfaces of water isotopic species [H. Partridge, D.W. Schwenke, J. Chem. Phys. 106 (1997) 4618] is discussed. The latter confirms a good consistency of mass-dependent DBOC corrections in the PS potential function with new experimental rovibrational data.  相似文献   

3.
The spectrum of B2Σ+-X2Σ+ system of AlO has been recorded on BOMEM DA8 Fourier transform spectrometer at an apodized resolution of 0.05 cm−1. Nineteen bands of the Δv = 1, 0, −1, and −2 sequences of this band system have been analyzed for the rotational structure. Out of which seven bands, viz. 3-2, 4-3, 2-3, 3-4, 4-5, 5-6 and 6-7 have been analyzed for the first time. The rotational lines of these 19 bands along with 20 earlier analyzed bands, a total of 7200 lines, have been fitted in a simultaneous least squares fit. The study has resulted in determining more precise vibrational and rotational constants of the two states. Because of the high resolution employed it became necessary to invoke H0 and H1 coefficients, and a fifth order term to explain the anomalous spin-doubling observed in the v″ = 5, 6 and 7 levels of the X2Σ+ state.  相似文献   

4.
Rotationally resolved ultrahigh-resolution fluorescence excitation spectra of the S1 ← S0 transition of dibenzofuran have been observed using the technique of crossing a collimated molecular beam and the single-mode UV laser beam. 3291 rotational lines of the band and 3047 rotational lines of the band have been assigned. The band has been found to be a b-type transition, in which the transition moment is along the twofold symmetry axis of this molecule, and only the ΔKa = ± 1 transitions were observed. The excited state is identified to be the S11A1(ππ) state. In contrast with this, the band has been found to be an a-type transition in which the transition moment is along the long axis in plane. It indicates that the intensity of this vibronic band arises from vibronic coupling with the S21B2(ππ) state. We determined the accurate rotational constants and the molecule have been shown to be planar both in the ground and excited states.  相似文献   

5.
SiH4 and GeH4 dissociative adsorptions on a buckled SiGe(1 0 0)-2 × 1 surface have been analyzed using density functional theory (DFT) at the B3LYP level. The Ge alloying in the Si(1 0 0)-2 × 1 surface affects the dimer buckling and its surface reactivity. Systematic Ge influences on the reaction energetics are found in SiH4 and GeH4 reactions with four dimers of Si-Si, Ge-Si, Ge-Ge, and Si-Ge (∗ denotes the protruded atom). On a half H-covered surface, the energy barriers for silane and germane adsorption are higher than those on the pristine surface. The energy barrier for silane adsorption is higher than the corresponding barrier for germane adsorption. Rate constants are also calculated using the transition-state theory. We conclude that the SiGe surface reactivity in adsorption reaction depends on the Ge presence in dimer form. If the surface Ge is present in form of Ge-Ge, the surface reactivity decreases as the Ge-Ge content increases. If the surface Ge prefers to be in form of Ge-Si at low Ge contents, the surface reactivity increases first, then decreases at high Ge surface contents when Ge-Ge prevails. The calculated rate constant ratio of GeH4 adsorption on Si-Si over Ge-Ge at 650 °C is 2.1, which agrees with the experimental ratio of GeH4 adsorption probability on Si(1 0 0) over Si(1 0 0) covered by one monolayer Ge. The experimental ratio is 1.7 measured through supersonic molecular beam techniques. This consistency between calculation and experimental results supports that one monolayer of Ge on Si(1 0 0) exists in form of Ge-Ge dimer.  相似文献   

6.
The dependence of pressure broadening upon hyperfine component in the P(10) and P(70) lines of the (17,1) band of the I2 X1Σ(0g+)→B3Π(0u+) has been studied using laser saturation spectroscopy. By limiting absorption to the zero velocity group, Doppler broadening is removed, lineshapes with widths (FWHM) <9 MHz are detectable, and collision-induced broadening is measured at pressures of 0.2-1.2 Torr. The rates for broadening by argon are 8.3±0.3 and 10.7±0.4 MHz/Torr for the P(70) and P(10) lines, respectively. No significant variation in broadening rates is observed for the 15 hyperfine components of these even rotational lines. The effects of velocity cross-relaxation introduce a broad baseline into the spectra, which is strongly dependent on rotational state, pressure, and laser modulation frequency. The observed broadening rates correlate well with prior measurements and the polarizability of the collision partner.  相似文献   

7.
The rotational spectra of 28SiF2, 29SiF2, and 30SiF2 in their ground vibrational states, as well as those of 28SiF2 in the v1 = 1, v2 = 1, v3 = 1, and v2 = 2 excited states have been studied in selected frequency regions between 80 and 700 GHz. Transitions involving a large range of quantum numbers have been observed, so that precise rotational and quartic centrifugal distortion constants could be determined for each of the spectra investigated. In addition, the complete set of sextic distortion constants was also obtained for the most abundant isotopomer in its ground vibrational state. The quadratic and cubic force constants of silicon difluoride have been refined by a least-squares procedure using a larger and more precise set of data.  相似文献   

8.
The far-infrared emission spectra of deuterated water vapour were measured at different temperatures (1370, 1520, and 1950 K) in the range 320-860 cm−1 at a resolution of 0.0055 cm−1. The measurements were performed in an alumina cell with an effective length of hot gas of about 50 cm. More than 1150 new measured lines for the D216O molecule corresponding to transitions between highly excited rotational levels of the (0 0 0) and (0 1 0) vibrational states are reported. These new lines correspond to rotational states with higher values of the rotational quantum numbers compared to previously published determinations: Jmax=26 and for the (0 0 0) ← (0 0 0) band, Jmax=25 and for the (0 1 0) ← (0 1 0) band, and Jmax=26 and for the (0 1 0) ← (0 0 0) band. The estimated accuracy of the measured line positions is 0.0005 cm−1. To our knowledge no experimentally measured rotational transitions for D216O within an excited vibrational state have been available in the literature so far. An extended set of experimental rotational energy levels for (0 0 0) and (0 1 0) vibration states including all previously available data has been determined. For the data reduction we used the generating function model. The root mean square (RMS) deviation between observed and calculated values is 0.0012 cm−1 for 692 rotational levels of the (0 0 0) state and 0.0010 cm−1 for 639 rotational levels of the (0 1 0) vibrational state. A comparison of the observed energy levels with the best available values from the literature and with the global predictions from molecular electronic potential energy surface [J. Chem. Phys. 106 (1997) 4618] for the (0 0 0) and (0 1 0) states is discussed.  相似文献   

9.
Emission spectra of WO have been observed in the 4000-35 000 cm−1 region using a Fourier transform spectrometer. Molecules were produced by exciting a mixture of WCl6 vapor and He in a microwave discharge lamp. A 3Σ state has been assigned as the ground state of WO based on a rotational analysis of the observed bands and ab initio calculations. After rotational analysis, a majority of strong bands have been classified into three groups. Most of the transitions belonging to the first group have an Ω = 0+ state as the lower state while the bands in the second group have an Ω′′ = 1 state as the lower state. These two lower states have been assigned as X0+ and X1 spin components of the X3Σ ground state of WO. The third group consists of additional bands interconnected by common vibrational levels involving some very low-lying states. The spectroscopic properties of the low-lying electronic states have been predicted from ab initio calculations. The details of the rotational analysis are presented and an attempt has been made to explain the experimental observations in the light of the ab initio results.  相似文献   

10.
The microwave spectra of two isotopic species of acetyl isocyanate, 13CH3C(O)NCO and CD3C(O)NCO, were observed in order to determine the ro structure and confirmation of the molecular conformation. These isotopic species were prepared by reacting acetyl-2-13C-chloride or acetyl-d3 chloride with sliver cyanate. The rotational spectra of A-level in 26.5-60.0 GHz region have been observed by Stark-modulated microwave spectrometer. Some absorption lines in E-level were observed in 13CH3C(O)NCO. The rotational constants in the ground vibrational state were determined to be A = 10654.8(18), B = 2177.32(2), and C = 1827.65(2) MHz for 13CH3C(O)NCO, and A = 9713.90(6), B = 2042.04(2), and C = 1722.78(2) MHz for CD3C(O)NCO, respectively. The values of ΔI (= Ic − Ia − Ib) of the 13C species (−3.024(13) uÅ2) and the d3 species (−6.163(3) uÅ2) indicate that the molecule has Cs symmetry. The rs coordinates of the carbon atom in the methyl group were determined to be |a| = 2.183(3), |b| = 0.706(9), and |c| = 0.080(87) Å. The determined coordinates were in agreement with those calculated for the cis form, in which the carbonyl group is eclipsed by the NCO group. The six structural parameters of the cis form were adjusted by fitting to the observed rotational constants. The observed rotational constants of the cis form were in better agreement with those calculated using the QCISD/6-31G (d, p) level rather than those calculated using the MP2/6-31G (d, p) level. The barrier of internal rotation of the methyl group was determined as 4.283(16) kJ mol−1 in 13CH3C(O)NCO. The structural tendencies and the relationship between RNC and 14N quadrupole coupling constants (χcc) were discussed.  相似文献   

11.
The high-resolution infrared spectrum of the polar N2O dimer has been observed in the region of the N2O ν3 fundamental (∼1280 cm−1) using a tunable diode laser to probe a pulsed supersonic slit jet. About 120 rotational transitions were assigned in terms of an a/b hybrid band of a planar asymmetric top molecule with a slipped parallel structure. The vibrational origin was determined to be 1290.21 cm−1, showing a blue shift of 5.31 cm−1 with respect to the monomer band origin. In addition, the spectrum of the nonpolar isomer at 1279.71 cm−1 has been remeasured and analyzed in improved detail. Small but widespread perturbations are noted in this band, which appear somewhat similar to larger effects observed previously in the ν1 + ν3 region for nonpolar (N2O)2.  相似文献   

12.
The rotational spectrum of argon trifluoroacetonitrile complex has been studied by pulsed-nozzle, Fourier transform microwave spectroscopy. Both a-type and b-type transitions have been observed. The rotational constants are A = 3053.0903(2) MHz, B = 1039.9570(2) MHz, and C = 895.5788(1) MHz. The 14N nuclear quadrupole hyperfine components of the rotational transitions have been resolved, the 14N nuclear quadrupole coupling constants are χaa = 1.746(1) MHz, and χbb − χcc = −6.426(2) MHz. The complex is T-shaped, with the argon atom located 3.73 Å from the center of mass of the trifluoroacetonitrile molecule.  相似文献   

13.
The absorption spectrum of the KAr molecule has been observed with high resolution between 13 032 and 13 077 cm−1 using tunable laser diodes as light sources, a supersonic beam for production of the molecules, and laser-induced fluorescence for detection. In addition, optical-optical double resonance (OODR) experiments have been performed to simplify the spectrum and to get rotational assignment. Altogether, 670 lines due to the transition B2Σ+ ← X2Σ+ have successfully been assigned with vibrational levels of the B state ranging from v = 0 to v = 6. The corresponding energy values were fitted to the well-known Dunham expansion. In addition, we were able to analyse a local perturbation between the vibrational level v = 1 of the B state and v = 14 of the A2Π3/2 state. Unexpected extra lines in the OODR spectra are most probably due to a collision-induced population of other levels. For the equilibrium distance and the well-depth of the B state we obtain from the Dunham expansion 7.03 (8) Å and 26.2 (8) cm−1, respectively.  相似文献   

14.
The gas phase infrared emission spectrum of the A3Σ-X3Π electronic transition of SiC has been observed using a high resolution Fourier transform spectrometer. Three bands ν′ − ν″ = 0-1, 0-0, and 1-0 have been observed in the 2770, 3723, and 4578 cm−1 regions, where the 0-1 and 0-0 bands were observed for the first time. The SiC radical was generated by a dc discharge in a flowing mixture of hexamethyl disilane [(CH3)6Si2] and He. A total of 1074 rotational transitions assigned to the 0-1, 0-0, and 1-0 bands have been combined in a simultaneous analysis with previously reported pure rotational data to determine the molecular constants for SiC in the two electronic states. The principal equilibrium molecular constants for the A3Σ state are: Be = 0.6181195(18) cm−1, αe = 0.0051921(20) cm−1, re = 1.8020884(26) Å, and Te = 3773.31(17) cm−1, with one standard deviation given in parentheses. The effect of a perturbation was recognized between the ν = 4 level of X3Π and the ν = 0 level of A3Σ, and the analysis was carried out to determine the interaction parameter between the two states.  相似文献   

15.
The microwave spectrum of furfural was investigated in the frequency range 7 GHz-21 GHz and 49 GHz-330 GHz. The ground and first torsional state of trans-furfural and ground state of cis-furfural were assigned and analyzed. A total of 1720 rotational lines with J up to 100 and Ka up to 53 were assigned to the ground state of trans-furfural, 1406 rotational lines with J up to 100 and Ka up to 48 were assigned to the first torsional state of trans-furfural and 2103 rotational lines with J up to 90 and Ka up to 48 to the ground state of cis-furfural. Accurate sets of centrifugal distortion constants for both conformations have been determined for the first time. The spectra of all 13C and 18O singly substituted isotopic species were observed in natural abundance in the 7 GHz-21 GHz range. Molecular structure co-ordinates, bond lengths and angles of the Kraitchman substitution type (rs) and pseudo-Kraitchman type (rpKr) are derived from the isotopic studies.  相似文献   

16.
Hiroyuki Kizaki 《Surface science》2007,601(18):3956-3960
Photon stimulated ion desorption (PSID) from methyl ester terminated self-assembled monolayer (MHDA-SAM, HS(CH2)15COOCH3) and methyl mercaptoacetate (MA, HSCH2COOCH3) on Ag has been investigated using soft X-ray in the C and O K-edge regions. In MHDA-SAM on Ag, site-selective ion desorption has been clearly observed at resonant core excitations of C1s, O1s(OCH3) → σ(OCH3) and O1s(OCH3) → σ(COCH3). Ion intensity in MA on Ag is obviously reduced for (n = 1-3) at C1s, O1s(OCH3) → σ(OCH3) excitations, and no site-selective reaction at O1s(OCH3) → σ(COCH3) excitations has been observed. These reactions may be influenced by configurational difference of reactive sites. It is suggested that surface effects on the selective reaction due to positioning methyl ester group near the surface plays an important role.  相似文献   

17.
The Fourier transform microwave spectrum of isopropenyl acetate (CH3COOC(CH3)CH2) has been measured under molecular beam conditions. The experimental data as well as quantum chemical calculations have shown that this molecule exists as only one conformer of C1 symmetry, in which the vinyl group is tilted by an angle of approximately 70° against the plane containing the ester group. Due to internal rotation of the acetyl methyl group, we found large A-E splittings of all lines (from a few MHz up to 1 GHz or more). We also were able to resolve the splitting due to the internal rotation of the second isopropenyl methyl group. The A species lines split into doublets and the E species lines into triplets. These splittings vary from 10 kHz up to 1 MHz, much smaller than the splittings due to the acetyl methyl group. By analyzing the spectrum with the program Xiam, a torsional barriers of 135.3498(38) and 711.7(73) cm−1 for the acetyl methyl group and the isopropenyl methyl group were observed, respectively. All lines in the spectrum were also fitted with the program Erham to a standard deviation of only 2.3 kHz.  相似文献   

18.
A high resolution (0.0018 cm−1) Fourier transform instrument has been used to record the spectrum of an enriched 34S (95.3%) sample of sulfur dioxide. A thorough analysis of the ν2, 2ν2 − ν2, ν1, ν1 + ν2 − ν2, ν3, ν2 + ν3 − ν2, ν1 + ν2 and ν2 + ν3 bands has been carried out leading to a large set of assigned lines. From these lines ground state combination differences were obtained and fit together with the existing microwave, millimeter, and terahertz rotational lines. An improved set of ground state rotational constants were obtained. Next, the upper state rotational levels were fit. For the (0 1 0), (1 1 0) and (0 1 1) states, a simple Watson-type Hamiltonian sufficed. However, it was necessary to include explicitly interacting terms in the Hamiltonian matrix in order to fit the rotational levels of the (0 2 0), (1 0 0) and (1 0 1) states to within their experimental accuracy. More explicitly, it was necessary to use a ΔK = 2 term to model the Fermi interaction between the (0 2 0) and (1 0 0) levels and a ΔK = 3 term to model the Coriolis interaction between the (1 0 0) and (0 0 1) levels. Precise Hamiltonian constants were derived for the (0 0 0), (0 1 0), (1 0 0), (0 0 1), (0 2 0), (1 1 0) and (0 1 1) vibrational states.  相似文献   

19.
The pure rotational J + 1 ← J transitions, with J = 0, 1, 3-8, of H13CN have been observed in the millimeter- and submillimeter-wave region using the Lamb-dip technique to resolve the hyperfine structure due to H, 13C, and 14N. The present observations allow us to provide for the first time the spin-rotation constant of 13C and the spin-spin interaction constant S12 (between H and 13C) as well as to remarkably improve the quadrupole coupling and spin-rotation constants of 14N. In addition, a good empirical estimation of CI(H), based on ab initio calculations, has also been provided. Furthermore, our frequencies together with previous data permit to determine the most accurate ground state rotational parameters known up to now.  相似文献   

20.
High resolution Fourier transform spectra of a sample of sulfur dioxide, enriched in 34S (95.3%). were completely analyzed leading to a large set of assigned lines. The experimental levels derived from this set of transitions were fit to within their experimental uncertainties using Watson-type Hamiltonians. Precise band centers, rotational and centrifugal distortion constants were determined. The following band centers in cm−1 were obtained: ν0(3ν2)=1538.720198(11), ν0(ν1 + ν3)=2475.828004(29), ν0(ν1 + ν2 + ν3)=2982.118600(20), ν0(2ν3)=2679.800919(35), and ν0(2ν1 + ν3)=3598.773915(38). The rotational constants obtained in this work have been fit together with the rotational constants of lower-lying vibrational states [W.J. Lafferty, J.-M. Flaud, R.L. Sams, EL Hadjiabib, J. Mol. Spectrosc. 252 (2008) 72-76] to obtain equilibrium constants as well as vibration-rotation constants. These equilibrium constants have been fit together with those of 32S16O2 [J.-M. Flaud, W.J. Lafferty, J. Mol. Spectrosc. 16 (1993) 396-402] leading to an improved equilibrium structure. Finally the observed band centers have been fit to obtain anharmonic rotational constants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号