首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
流化床垃圾焚烧炉飞灰中二噁英的分布   总被引:3,自引:0,他引:3  
对某热电厂150吨/天垃圾和煤混烧焚烧炉百叶窗分离器收集的飞灰进行筛分和二噁英含量测定。灰样中>100μm的颗粒占到了86%以上。随粒径减小,二噁英总量浓度增大,且粒径<37μm飞灰的二噁英浓度最高。二噁英的毒性当量I-TEQ值在100μm的左右两侧均随粒径增大而降低。大于 100μm的颗粒是构成原始飞灰样品二噁英总量和I-TEQ值的主要部分。呋喃氯代物是飞灰中主要的二噁英,PCDDs/PCDFs比值小于1。本文还分析了影响飞灰中二噁英生成的其它因素。  相似文献   

2.
在0.15MWt循环流化床燃烧试验台上进行了城市垃圾与煤混烧试验,对焚烧后的灰渣中重金属的特性进行了研究。研究结果显示,重金属在焚烧产物中通常以不同的化合物形态存在,改变垃圾与煤混烧时的燃烧工况条件,可以改变重金属的化合物形态,从而改变重金属在灰渣中的分布;灰渣中重金属的浸出毒性低于危险废物浸出毒性鉴别标准中的限定值。  相似文献   

3.
本文以某低NO_x煤粉燃烧电厂除尘器两个不同时间段飞灰样为原料,采用湿法浮选从飞灰中分离漂珠,并对其形貌、颗粒尺寸和组成等进行了系统的分析。结果表明,低NO_x燃烧飞灰的漂珠形貌主要为规则的圆形颗粒,尺寸相对较飞灰颗粒尺寸大而且相对集中在30~80μm之间(占比约为77.6%~86.5%)。与飞灰相比,漂珠颗粒的玻璃体含量多;虽然两个飞灰样的灰成分组成差异明显,但其漂珠的灰成分组成一致,表现为颗粒中Fe_2O3含量较多,Na_2O及K_2O含量也相对较高,在低NO_x燃烧的还原性气氛下这种组成有利于降低灰熔点和黏度,形成玻璃空心微珠。  相似文献   

4.
流化床中垃圾与煤混烧的技术经济分析   总被引:2,自引:0,他引:2  
本文对城市生活垃圾在流化床中与煤的混烧技术进行了分析;根据垃圾热值;讨论了低热值垃圾焚烧中添加煤混烧的必要性;给出了垃圾处置收费和售电价格对于混烧电厂的经济影响。结果表明:对于所给定焚烧项目的垃圾来讲,其垃圾的低位热值近似为 4200 kJ/kg,需要进行混烧,其中煤的比例应小于10~20%;垃圾量的提高,垃圾收费带来的收益九;而垃圾热值的提高,售电价格带来的收益大。增加垃圾收费补贴可鼓励焚烧厂焚烧更多的垃圾。  相似文献   

5.
垃圾焚烧炉氯源对氯化氢和二噁英排放的影响   总被引:7,自引:0,他引:7  
本文研究了150 t/d垃圾与煤混烧流化床锅炉在不同含氯水平和添加钙基脱硫时氯化氢和二噁英的排放特性。实验结果表明烟气中的氯化氢和二噁英浓度随燃料中垃圾比例的增加而上升,在含氯量一定的情况下,炉内燃烧状况决定了二噁英的生成量,烟气中的二噁英随燃料中含氯量的增加而增加,飞灰中的二噁英则随燃烧状况的改善而增加。钙基的加入可以有效降低氯化氢和二噁英的排放。在我国目前的垃圾组分条件下,全煤工况和垃圾与煤混烧工况的二噁英排放量很低。  相似文献   

6.
以小龙潭电厂燃煤飞灰及其不同粒径范围的分级灰为对象,采用X射线荧光光谱、X射线衍射、离子色谱、Zeta电位、扫描电镜等实验方法研究了飞灰的物理化学特征.同时采用沉降实验、表面张力实验研究了三种不同润湿剂对飞灰的润湿性能.研究发现,溶液对飞灰的润湿能力不仅取决于其气液界面张力,还与飞灰的组成、表面电位以及形貌特征密切相关.亲水性物质含量的增加,颗粒表面电荷与润湿剂分子间的静电吸引,颗粒表面的棱角孔隙等均可以促进其润湿;温度越高飞灰润湿性能越好,且温度对飞灰润湿过程影响较大,温度较高(60℃)时润湿剂种类及浓度对飞灰润湿过程的影响不明显.  相似文献   

7.
高钙飞灰的矿物学组成及微区特征研究   总被引:1,自引:0,他引:1  
对小龙潭电厂飞灰及不同密度级的分选灰的矿物学和颗粒微区特征进行了详细研究,高钙飞灰中的含钙矿物主要包括石灰,硬石膏,钙黄长石,镁黄长石和氢氧钙石;同时含有少量斜硅钙石,方解石,钙铁石,陨硫钙石,钙铁榴石和钙铝榴石;不同密度级分选灰矿物组成和微区特征差异很大.石英、莫来石主要存在于低密度级飞灰;石灰、硬石膏在漂珠中明显富集;斜硅钙石和钙铝榴石主要存在于沉珠中;含铁矿物赤铁矿,磁铁矿以及钙铁石在重灰和沉珠中的含量明显高于漂珠和轻质灰.  相似文献   

8.
煤的灰层扩散系数对煤粒的燃烧有较大的影响。因此,本文用实验的方法测定了三种煤的灰层扩散系数。研究还发现,不同的颗粒直径、不同的煤种以及不同的灰层厚度、煤的灰层扩散系数均不同。最后,从其微观结构得到了合理的解释。  相似文献   

9.
ICP-AES在分析飞灰中重金属化学形态上的应用   总被引:8,自引:5,他引:3  
采用ICP-AES法对垃圾焚烧飞灰中七种重金属不同化学形态的含量进行了测定.该方法快速、准确,具有较好的精密度和准确度,除个别重金属浓度接近检出限时RSD相对较大外,其余测定结果RSD<3%,加标回收率为85.7%~100.63%.分析结果表明:飞灰中重金属Zn,Pb含量较高;Cd,Cu,Mn,Pb和Zn以碳酸盐结合态为主要形态,易进入环境;而Cr和Ni的Fe-Mn氧化物结合态最多,相对比较稳定.  相似文献   

10.
本文在一维沉降炉实验系统中进行准东煤燃烧实验,在沉降炉底部不同烟气温度处采用沉积取样探针收集灰样,采用低压撞击器(DLPI)与水冷稀释取样探针收集微细颗粒物,并采用扫描电镜(SEM)与X射线能谱仪(EDS)对灰样及细颗粒物进行分析获得准东煤燃烧过程中灰沉积特性与微细颗粒物形成机理,进而得到Na、Ca及S的迁移规律及其在结渣过程中所起作用。结果表明,准东煤中Na、Ca一共分为两类,一部分Na、Ca与硅铝结合形成硅铝酸盐,在燃烧过程中不可气化;剩余含Na、Ca化合物释放到烟气中并与S结合形成气相Na2SO4与CaSO4。随着烟气温度降低,Na、Ca的硫酸盐一部分在灰颗粒表面凝结,一部分形成气溶胶颗粒直接释放到大气中或发生团聚黏附在灰颗粒表面。  相似文献   

11.
Torrefied wood originating from beetle-killed trees is an abundant biomass fuel that can be co-fired with coal for power generation. In this work, pulverized torrefied wood, a bituminous coal (Sufco coal) and their blended fuel with a mixing ratio of 50/50 wt.%, are burned in a 100-kW rated laboratory combustor under similar conditions. Ash aerosols in the flue gas and ash deposits on a temperature-controlled surface are sampled during combustion of the three fuels. Results show that ash formation and deposition for wood combustion are notably different from those for coal combustion, revealing different mechanisms. Compared to the coal, the low-ash torrefied wood produces low concentrations of fly ash in the flue gas but significantly increased yields (per input ash) of ash that has been vaporized. All the mineral elements including the semi- or non-volatile metals in the wood are found to be more readily partitioned into the PM10 ash than those in the coal. The inside layer deposits sticking to the surface and the loosely bound outside deposits exposed to the gas both show a linear growth in weight during torrefied wood test. Unlike coal combustion, in which the concentration of (vaporized) ash PM1 controls the inside deposition rate, wood combustion shows that the formation of porous bulky deposits by the condensed residual ash dominates the inside deposition process. Co-firing removes these differences between the wood and coal, making the blended fuel to have more similar fly ash characteristics and ash deposition behavior to those of the bituminous coal. In addition, results also show some beneficial effects of co-firing coal with torrefied wood, including reduction of the total deposition rate and the minimization of corrosive alkali species produced by wood.  相似文献   

12.
Straw sample was torrefied at 260 °C and 300 °C in N2, respectively, to prepare torrefied straw named as T-260 and T-300, and the reduction effect of co-firing straw or torrefied straw and steam coal on PM1 is investigated. The combustion experiments were conducted in a high temperature drop tube furnace (DTF) at 1400 °C to collect the inorganic PM10 for further analysis. Combustion atmosphere was air for all cases and 50% O2/50% CO2 (OXY50) for coal, T-260 and their blends of 1:1 and 4:1. The results show that all three biomass fuels show obvious emission reduction of PM with aerodynamic diameters of ≤?0.3?µm (PM0.3) under both mix ratios. Reduction ratios of co-firing are overall higher at mix ratio of 1:1 than 4:1, and co-firing of T-260 or T-300 with coal shows higher reduction ratio than co-firing of straw. The higher ash content in torrefied straw leads to higher contents of alkali and alkaline earth metals (AAEM), which will further react with both Si and S during co-firing and coagulate into particles of larger sizes, leading to higher reduction ratios of PM0.3 and unconspicuous reduction effects in PM0.31 emitted from co-firing. During co-firing in oxyfuel atmosphere, a higher combustion temperature compared to air leads to an intensitive gasification, may resulting in effective and even higher reduction ratio in PM0.3.  相似文献   

13.
积灰降低锅炉效率,危及安全运行,是生物质燃烧技术发展的主要障碍.本文基于高温一维下行炉,选用锯屑和兖矿原煤作为燃料,通过自动控温采样枪收集积灰,分析积灰的采集效率、撞击效率和捕集效率等宏观效果参数.结果显示,锯屑与兖矿混烧时积灰倾向性显着增加.扫描电镜/能谱微观分析发现:碱金属和碱土金属的存在是积灰倾向增加的原因,两条主要途径是:碱性物质在飞灰表面冷凝增加了飞灰的表面黏性;碱性物质与硅铝酸盐结合形成低熔点的化合物.  相似文献   

14.
Co-firing ammonia in coal units is a promising approach for the phasedown of coal power. In this paper, we demonstrate the feasibility of burning ammonia with coal and biomass in a 25- kW down-fired furnace with a swirl-stabilized burner. Ammonia is injected from the central tube at thermal ratios ranging from 0 to30% and can be completely burnt out in most co-firing cases. We investigate the NOx emission, unburnt carbon in fly ash, particulate matter formation and ash deposition behaviors when co-firing NH3 with either SH lignite coal or the coal/biomass blend. With a fixed air staging ratio, the NOx emission increases linearly with the NH3 fuel ratio. By increasing the percentage of secondary air, the emitted NOx can be reduced to 300 ppm with an NH3 thermal ratio of 30%. The unburnt carbon is affected by NH3 addition in a complex manner. With a 30% (thermal) NH3 addition, the unburnt carbon increases from 0.4% to 5.6% for the SH coal mainly due to a temperature drop, but decreases from 2.2% to 0.7% for the SH coal/biomass blend. As for the ash-related issues, the addition of NH3 to either coal or coal/biomass blend is found to alleviate both the fouling intensity and the ultrafine particulate matter formation ability. This is a major advantage over biomass combustion.  相似文献   

15.
煤焦颗粒燃烧过程中,灰膜形成显著影响其燃烧特性。因此,本文借助高温沉降炉研究了61~75,75~90和90~125μm三种粒径黄陵烟煤在1273和1673 K温度下的燃烧特性与灰膜形成比例;借助扫描电镜(SEM)详细观测空心微珠颗粒内部结构,提出灰膜比例计算公式,并分析温度,粒径和碳转化率对灰膜比例的影响。结果表明,高温下大部分灰分在焦炭烧尽阶段以灰膜形式存在。灰膜比例随温度和碳转化率增加而增加,随煤粉粒径增大而减小。高温下灰分用于形成灰膜比例相对较高,这为煤焦燃尽阶段的低反应性提供了合理的解释。煤焦颗粒动态燃烧过程中灰膜形成比例随燃烧工况变化而变化。该研究为煤焦颗粒燃烧动力学模拟灰膜比例选择提供了关键数据支撑。  相似文献   

16.
In this paper, the correlations between coal/char fragmentation and fly ash formation during pulverized coal combustion are investigated. We observed an explosion-like fragmentation of Zhundong coal in the early devolatilization stage by means of high-speed photography in the Hencken flat-flame burner. While high ash-fusion (HAF) bituminous and coal-derived char samples only undergo gentle perimeter fragmentation in the char burning stage. Simultaneously, combustion experiments of two kinds of coals were conducted in a 25?kW down-fired combustor. The particle size distributions (PSDs) of both fine particulates (PM1-10) and bulk fly ash (PM10+) were measured by Electrical Low Pressure Impactor (ELPI) and Malvern Mastersizer 2000, respectively. The results show that the mass PSD of residual fly ash (PM1+) from Zhundong coal exhibits a bi-modal shape with two peaks located at 14?µm and 102?µm, whereas that from HAF coal only possesses a single peak at 74?µm. A hybrid model accounting for multiple-route ash formation processes is developed to predict the PSD of fly ash during coal combustion. By incorporating coal/char fragmentation sub-models, the simulation can quantitatively reproduce the measured PM1+ PSDs for different kinds of coals. The sensitivity analysis further reveals that the bi-modal mass distribution of PM1+ intrinsically results from the coal fragmentation during devolatilization.  相似文献   

17.
This paper presents comparative experimental studies of the morphology and elemental composition of fly ash particles from coal- and biomass-fired boilers, deposited in each stage of 3-stage electrostatic precipitators (ESPs). It was shown that fly ash morphology, its physical properties, and the percentage of elements in the fly ash taken from each stage of ESP depend on the kind of fuel. The biomass fly ash contains many irregular large particles, which are pieces of unburned wood. Bulk density of biomass fly ash is on average lower than that of coal fly ash, and drastically decreases in the second and third stages of ESP. The resistivity, measured at electric field of 4 kV/cm, of fly ash from biomass-fired boilers is much lower than that from coal, and can be below 102 Ω m, whereas from coal, except the first stage, varies in the range from 107 to 1010 Ω m. The low resistivity of coal fly ash in the first stage of ESP results from high carbon content, and of biomass is probably an effect of additional high percentage of potassium, calcium and sodium sulfates. The percentage of Si, Al, Na, Fe, and Ti in fly ash from coal-fired boilers is much higher than from biomass, and in the opposite, the percentage of Mg, K, Ca, Mn, Mo, S, Cl, and P in biomass ash exceeds that in coal fly ash. Potential detrimental effects of biomass combustion products (salts, acids, tar) leaving the boiler on the construction elements of the electrostatic precipitator, including electrodes and HV insulators have been discussed in this paper. It was concluded that the long-term effects of biomass co-firing on the electrostatic precipitator performance, including the collection efficiency, have not been sufficiently studied in the literature and these issues require further detailed investigations.  相似文献   

18.
An online thermogravimetric measurement method of ash deposition was developed. Ash deposition and slag bubble in the reductive zone of pulverized coal staged combustion were investigated. Firstly, a steady pulverized coal staged combustion was achieved in an electrically heated down-fired furnace. Additionally, gas species, coal conversion, and particle size distribution were quantitatively measured. Secondly, real-time ash deposition rates at different temperatures (1100–1400 °C) were measured, and deposition samples were carefully collected with an N2 protection method. The morphologies of collected samples were investigated through a scanning electron microscope. It was found that the deposited ash transformed from a porous layer composed of loosely bound particles to a solid layer formed by molten slag. Different behaviors of the slag bubble were observed, and bubble sizes were significantly affected by the deposition temperature. A deposition and bubble formation mechanism was proposed and used for modeling. Results showed that the proposed model well predicted the observed ash deposition and bubble formation process.  相似文献   

19.
Utilizing ammonia as a co-firing fuel to replace amounts of fossil fuel seems a feasible solution to reduce carbon emissions in existing pulverized coal-fired power plants. However, there are some problems needed to be considered when treating ammonia as a fuel, such as low flame stability, low combustion efficiency, and high NOx emission. In this study, the co-firing characteristics of ammonia with pulverized coal are studied in a drop tube furnace with staged combustion strategy. Results showed that staged combustion would play a key role in reducing NOx emissions by reducing the production of char-NOx and fuel(NH3)-NOx simultaneously. Furthermore, the effects of different ammonia co-firing methods on the flue gas properties and unburned carbon contents were compared to achieve both efficient combustion and low NOx emission. It was found that when ammonia was injected into 300 mm downstream under the condition of 20% co-firing, lower NOx emission and unburnt carbon content than those of pure coal combustion can be achieved. This is probably caused by a combined effect of a high local equivalence ratio of NH3/air and the prominent denitration effect of NH3 in the vicinity of the NH3 downstream injection location. In addition, NOx emissions can be kept at approximately the same level as coal combustion when the co-firing ratio is below 30%. And the influence of reaction temperature on NOx emissions is closely associated with the denitration efficiency of the NH3. Almost no ammonia slip has been detected for any injection methods and co-firing ratio in the studied conditions. Thus, it can be confirmed that ammonia can be used as an alternative fuel to realize CO2 reduction without extensive retrofitting works. And the NOx emission can be reduced by producing a locally NH3 flame zone with a high equivalence ratio as well as ensuring adequate residence time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号