首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于800nm飞秒激光脉冲,设计并搭建了长周期光纤光栅制备系统,该系统通过采用20倍率的显微物镜将飞秒激光脉冲诱导入标准单模光纤纤芯位置,采用水平、垂直双CCD视频监控方式实现对飞秒激光脉冲刻蚀长周期光纤光栅的逐点监测,对未载氢处理的标准单模光纤进行了不同周期、不同周期长度和不同占空比刻写实验.研究结果表明,当选取激光脉冲能量为1.3mW、光栅周期为500μm、光栅占空比为0.6时,该光栅在谐振波长1 300nm处最大谐振峰强度为11.65dB,带外损耗低于2dB,且光栅谐振波长随光栅长度不发生明显漂移;通过光栅占空比的调整,可实现刻写光栅光谱特性的优化设计,使得谐振峰由多峰转为单峰.  相似文献   

2.
利用800 nm飞秒激光脉冲作为光源,在标准通信单模光纤上直接刻写周期分别为100,200,300和400 m的长周期光纤光栅(LPFG),得到波长范围为1 280~1 680 nm的透射谱,分析研究了在不同刻写条件下LPFG透射谱的共振波长、透射深度和插入损耗等参数的变化。通过对比分析发现透射衰减与刻写长度、条数以及平台高度等有着一定的对应关系。优化实验参数制作出共振波长分别约为1 407,1 311,1 669,1 551 nm,透射深度分别约为24.0,22.3,27.8,23.4 dB,插入损耗分别约为2.5,1.7,3.2,2.0 dB的LPFG。  相似文献   

3.
一种基于新型长周期光纤光栅的动态增益均衡器   总被引:9,自引:5,他引:4  
报道了一种用高频CO2激光脉冲写出的长周期光纤光栅的温度特性和弯曲特性.实验表明,这种长周期光纤光栅的波长漂移随温度的变化呈线性关系,它的透射峰幅值变化随弯曲量的变化也呈线性关系.基于这两种线性关系,通过控制新型长周期光纤光栅的谐振峰位置和幅度,动态平坦了一组掺铒光纤放大器增益谱线.实验结果表明在C波段32nm范围内掺铒光纤放大器增益谱线平坦度可动态调整为±0.7dB.  相似文献   

4.
利用高频CO2激光单侧曝光技术及双芯光纤的非对称性,设计并制作了一种长周期光纤光栅弯曲矢量传感器.成栅机理分析表明,光纤边缘处嵌入的纤芯极大地增强了包层中的残余应力,在CO2激光脉冲曝光时,残余应力释放作用增强,光栅质量更高;同时,双芯光纤的非对称结构以及CO_2激光单侧曝光使得光纤器件对偏振非常敏感,写制的光纤光栅在1 555.4nm谐振波长处的偏振相关损耗高达20.8dB.弯曲传感测试表明,在0~1.235m~(-1)曲率范围内,光纤光栅向+y方向弯曲时,透射谱谐振峰波长向长波方向漂移,灵敏度为2.37nm/m~(-1);光纤光栅向-y方向弯曲时,谐振峰波长向短波方向漂移,灵敏度为1.80nm/m~(-1).该弯曲矢量传感器结构简单,灵敏度高,可广泛应用于道路、桥梁等建筑的安全检测.  相似文献   

5.
长周期光纤光栅结构参数与透射谱关系的仿真研究   总被引:1,自引:0,他引:1  
利用光纤3层模型理论,通过仿真研究发现长周期光纤光栅结构参数与透射谱的变化有规律性关系,给出了一阶低次包层模与导模耦合时透射谱的变化规律。当长周期光纤光栅的纤芯、包层的半径和折射率增大时,谐振波向短波方向漂移;当长周期光纤光栅周期增大时,谐振波向长波方向漂移;当长周期光纤光栅长度增加时,谐振波没有漂移现象,但是其深度减小。通过综合分析发现:谐振波漂移方向比较明确,但是损耗峰深度的变化并没有明显的规律。  相似文献   

6.
用两个周期为600μm,齿宽为200μm的周期性刻槽板彼此错开从上下两面对单模光纤施压,在光纤中形成了微弯式长周期光纤光栅。由于齿宽小于二分之一周期,可产生更深的光纤微弯调制,获得更大的交流交叉耦合系数。通过测量两个光栅长度分别为6 cm和12 cm的微弯式长周期光纤光栅在不同压力下的透射谱,研究了峰值损耗、附加损耗、损耗谱半峰全宽与压力和光栅长度的关系。对于长12 cm的微弯式长周期光纤光栅,在第一饱和压力点峰值损耗达到19.2 dB,损耗谱半峰全宽(FWHM)为20 nm,附加损耗只有0.26 dB;经过三次过耦合得到34 dB的峰值损耗。然后用理论结合实验数据分析发现当光纤所受压力小于饱和压力时,光纤光栅交流交叉耦合系数与压力成正比。  相似文献   

7.
基于扭曲长周期光纤光栅的高灵敏度压力传感器   总被引:2,自引:4,他引:2  
研究了高频CO2激光脉冲写入的长周期光纤光栅在扭曲状态下的横向负载特性.发现扭曲降低了光纤光栅谐振波长横向负载灵敏度的方向相关性,使得这种光栅在各圆周方向上谐振波长对横向负载都不敏感,而谐振峰幅度随横向负载的增加线性减小,且谐振峰幅度的负载灵敏度随扭曲率的增加而提高.在扭曲率为1.8°mm-1时负载灵敏度可达0.47 dB/(g·mm-1),是自由状态长周期光纤光栅横向负载灵敏度的7倍,最后给出了利用这种扭曲长周期光纤光栅通过强度解调实现压力传感的实验研究结果.  相似文献   

8.
姜明顺  冯德军  隋青美 《光子学报》2009,38(6):1397-1340
利用机械线加工技术设计矩形压力槽制作了周期为600 μm,周期数为60的长周期光纤光栅.实验研究了所制作长周期光纤光栅的温度和压力特性,并通过调整光纤和压力槽之间的角度改变长周期光纤光栅的谐振波长.采用此技术制作的长周期光纤光栅最大谐振峰值可达15 dB,通过调整光纤与压力槽之间的角度可使谐振波长变化超过12 nm.  相似文献   

9.
朱涛  饶云江  王若崑  王久玲 《物理学报》2006,55(9):4720-4724
提出并利用高频CO2激光脉冲在普通单模通信光纤上写出了包层旋转折变型长周期光纤光栅(R-LPFG). 在分析R-LPFG波导结构和双折射特性的基础上,对光栅周期数和折变旋转度分别为50和7.2°/周期的R-LPFG进行了实验研究.结果表明,这种类型的光栅可极大地降低其谐振波长对横向负荷不同作用方向所表现出的方向相关性,并且其谐振峰幅度横向负荷灵敏度在任意方向下均高达0.37dB/(g·mm-1) ,是普通LPFG横向负荷灵敏度的9倍左右.利用R-LPFG的温度线性响应特性和独特的横向负荷特性,设计并实验研究了一种动态增益均衡器,用其平坦掺铒光纤放大器增益谱,在C波段32nm范围内,其平坦度小于±0.5dB,可满足实际环境对通信系统的平坦应用要求. 关键词: 光纤通信技术 长周期光纤光栅 动态增益均衡 旋转折变  相似文献   

10.
采用局域耦合模理论对一种光子晶体光纤长周期光栅的耦合机理和特性进行了研究.建立了栅区模型,用局域耦合模理论和传统的耦合模理论模拟出LP01和LP02、LP01和LP11耦合的透射谱,并进行比较.从理论上分析局域耦合模理论对光子晶体光纤长周期光栅的适用性,研究了栅格个数、栅格周期和光栅栅区对透射谱的影响.模拟结果表明:随着栅格周期的增大,谐振波长向短波方向移动;随着栅格个数的增加,透射峰深度增加;随着栅区塌陷深度的增加,谐振波长向长波方向移动.  相似文献   

11.
长周期保偏光纤光栅的偏振特性研究   总被引:2,自引:2,他引:0  
莫秋菊  饶云江  冉曾令  朱涛 《光子学报》2006,35(12):1884-1887
用高频CO2激光脉冲写入法在熊猫保偏光纤上写入长周期光纤光栅,并对其偏振特性进行了全面的试验研究.试验结果表明,在输入椭圆偏振光偏振角度0到2π的变化范围内,高频CO2激光脉冲写入法在熊猫保偏光纤上写入的长周期光纤光栅谐振峰幅值会随着入射椭圆偏振光偏振角度的改变发生以π为周期的周期性变化,并且相邻两谐振峰幅值变化趋势相反,相位差为π.在相同偏振角度下将两谐振峰幅值相减,其差值呈近似于锯齿波的周期性变化,周期也为π.在没有发生模式干扰的情况下,谐振峰波长几乎没有发生漂移.基于模式耦合理论,文中还对所观察到的试验现象进行了定性的理论解释.  相似文献   

12.
长周期光纤光栅耦合模理论分析   总被引:1,自引:1,他引:0       下载免费PDF全文
冯仙群  叶斌元 《应用光学》2008,29(6):995-998
长周期光纤光栅作为透射型光无源器件,以其在通信和传感领域具有广阔应用前景而引起人们的关注。要得到满足性能要求的光纤光栅,对其透射谱的分析是基础。通过耦合模方程确定了基模和一阶各次包层模之间的耦合常数。在设定的光纤光栅参数条件下,通过Matlab进行模拟得到了最终需要的长周期光纤光栅透射谱,并由此得出:长周期光纤光栅谐振波长出现的位置主要由光栅的周期决定,损耗大小可以通过调节光栅长度和折射率来实现。  相似文献   

13.
双波长啁啾相移光纤光栅   总被引:2,自引:2,他引:0  
陈金林  孙军强  夏利  刘爽 《光子学报》2009,38(7):1776-1779
理论研究并实验验证了一种含有两段π相移的啁啾相移光纤光栅.采用F矩阵对啁啾相移光纤光栅进行计算并分析了该光栅的谱特性.含有两段π相移的啁啾相移光纤光栅可以在普通啁啾光栅透射谱阻带中产生双波长透射峰,透射峰位置直接取决于光栅中π相移的位置,透射峰的线宽和透射峰的波长间隔没有关系,仅随着啁啾率的增大而增大.采用带相位掩模的逐点扫描法对含有两段π相移的双波长啁啾相移光栅进行了制作,获得波长间隔为8 nm的双波长透射谱的光栅器件.该光栅的消光比和3 dB谱线宽分别为20 dB和0.08 nm,实验结果和理论设计一致.  相似文献   

14.
张琪  周骏  陈金平  谭晓玲 《光子学报》2013,42(3):307-310
提出并制作出一种基于锥体光纤-长周期光纤光栅-锥体光纤结构的全光纤Mach-Zehnder(M-Z)干涉仪传感器,并对其温度传感特性进行了研究.实验结果表明,固定光纤锥体和长周期光纤光栅的结构,仅改变两个光纤锥体之间的距离,对应不同的M-Z干涉谐振峰呈现出不同的温度传感特性:随着两个光纤锥体之间的距离增加,位于短波长处的谐振峰,传感器的温度灵敏度减小,而位于长波长处的谐振峰,传感器的温度灵敏度增加.当传感器长度为16.5 cm时,在1 680 nm附近的温度灵敏度达到0.102 06 nm/℃.实验结果对于锥体光纤-长周期光纤光栅组合型温度传感器的优化设计具有重要参考价值.  相似文献   

15.
为了克服折射率测量过程中温度交叉敏感的影响,提出并制备了一种少模光纤长周期光栅传感器.该传感器利用CO_2激光器在少模光纤上先写入周期为654μm、长度为30mm的长周期光栅,然后用旋转平台将光纤旋转180°,再写入相同长度周期为819μm的长周期光栅制作而成,其传输光谱在1 487.2nm和1 533.0nm处出现两个由不同模式耦合形成的谐振峰,通过监测两个谐振峰差值的变化减少温度串扰,实现折射率的测量.实验结果表明:两个谐振峰差值在折射率1.333 3~1.376 6范围内的灵敏度为143nm/RIU,在温度20~70℃范围内的灵敏度为-0.002 5nm/℃,温度灵敏度远低于折射率灵敏度,具有对温度不敏感的特性.与传统光纤传感器相比,该传感器具有温度干扰小,折射率灵敏度高等优势,并且尺寸较小、结构紧凑,可在工业、水利、医学等领域广泛应用.  相似文献   

16.
一种新颖的长周期光纤光栅可调增益均衡器   总被引:6,自引:1,他引:5  
发现高频CO2激光脉冲写入的新型长周期光纤光栅的谐振波长对特定圆周方向的横向负载不敏感,谐振峰幅值随横向负载而线性变化;而且这种长周期光纤光栅的谐振波长随温度变化而线性变化,谐振峰幅值对温度变化不敏感。由此设计而成的可调增益均衡器可实现谐振波长和幅值的动态独立调节,能很好地满足均衡掺铒光纤放大器增益谱的需要。  相似文献   

17.
高频CO2激光脉冲写入长周期光纤光栅的弯曲特性分析   总被引:2,自引:1,他引:1  
分析了高频CO2激光脉冲写入的长周期光纤光栅弯曲的谐振波长漂移灵敏度、谐振峰幅值变化的机理,讨论了新型长周期光纤光栅弯曲方向相关性并进行了数值计算,分析结果与实验结果相符.  相似文献   

18.
在折射率与应变测试时,为了降低温度影响所引起的串扰,对细芯长周期光纤光栅的温度、折射率和应变响应特性进行了研究。通过飞秒激光直写方法在纤芯直径为6μm的单模光纤上成功制备了周期为50μm的长周期光纤光栅。结果表明:在细芯光纤中以低激光能量加工的长周期光纤光栅具有较低的温度灵敏度,同时保持较大的消光比和较好的光谱质量。这种细芯长周期光纤光栅损耗峰在20~700°C温度范围内仅漂移1.7 nm。该光栅对折射率变化也具有较好的响应,环境折射率在1.406 5~1.426 5时,灵敏度最高可达882.51 nm/RIU,应变灵敏度为-2.2 pm/με。这种细芯长周期光纤光栅可以较好地降低折射率与应变测试中由于温度影响带来的串扰。  相似文献   

19.
矩形折射率调制型薄膜长周期光纤光栅特性研究   总被引:1,自引:0,他引:1  
镀膜长周期光纤光栅传感器是目前光纤光栅传感研究的一个热点,但关于此类传感器模型的全面的理论分析目前还很少。本文基于严格的四层模型,从理论上对芯层折射率调制为矩形波调制的薄膜长周期光纤光栅的特性进行了详细的分析。在充分考虑材料色散对光纤芯层和包层的影响后,对薄膜参数、占空比和环境折射率的变化对镀膜长周期光纤光栅的谱特性的影响进行了数值研究。研究结果表明,薄膜参数对透射谱有重要影响,合理设计薄膜厚度可以获得较佳的损耗峰。研究还发现,镀膜后占空比对透射谱的影响减小,而对环境折射率变化的敏感度增加。在占空比为0.5时光栅具有最大的损耗峰值。  相似文献   

20.
王久玲  饶云江  朱涛  宋韵 《光学学报》2007,27(10):1730-1734
报道了一种用高频CO2激光脉冲在普通通信光纤包层边缘单侧写入的新型长周期光纤光栅。研究发现,这种长周期光纤光栅的折射率变化主要发生在光纤包层区域,而纤芯的折射率变化较小;同时该光栅的附加损耗低于0.5 dB。进一步折射率特性实验研究表明,由于其特殊的折变结构,这种光栅具有较高的外界环境灵敏度,当外界折射率在1.41~1.45范围内变化时,其谐振波长漂移量高达15.52 nm,比实验测得的用传统方法写入的长周期光纤光栅谐振波长漂移量高出近3倍,这种光栅结构在光纤传感中将具有重要的应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号