首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The threshold for a signal masked by a narrow band of noise centered at the signal frequency (the on-frequency band) may be reduced by adding to the masker a second band of noise (the flanking band) whose envelope is correlated with that of the first band, an effect called comodulation masking release (CMR). This paper examines CMR as a function of masker bandwidth and time delay between the envelopes of the on-frequency and flanking bands. The 1.0-kHz sinusoidal signal had a duration of 400 ms. The on-frequency band was presented alone (reference condition) or with the flanking band. The flanking-band envelope was either correlated or uncorrelated with that of the on-frequency band. Flanking-band center frequencies ranged from 0.25-2.0 kHz. The flanking band was presented either in the same ear as the on-frequency band (monaural condition) or in the opposite ear (dichotic condition). The noise bands had bandwidths of 6.25, 25, or 100 Hz. In the correlated conditions, the flanking-band envelope was delayed with respect to that of the on-frequency band by 0, 5, 10, or 20 ms. For the 100-Hz bandwidth, CMRs were small (typically less than 1 dB) in both monaural and dichotic conditions at all delay times. For the 25-Hz bandwidth, CMRs were about 3.5 dB for the 0-ms delay, and decreased to about 1.5 dB for the 20-ms delay. For the 6.25-Hz bandwidth, CMRs averaged about 5 dB and were almost independent of delay time. The results suggest that the absolute delay time is not the critical variable determining CMR. The magnitude of CMR appears to depend on the correlation between the envelopes of the on-frequency and flanking bands. However, the results do not support a model of CMR that assumes that signal threshold corresponds to a constant change in across-band envelope correlation when the correlation is transformed to Fisher's z.  相似文献   

2.
Signal detection was determined in conditions where the masker was a 10-Hz-wide noise band centered on the signal, and in conditions where either a comodulated or noncomodulated noise band (centered at 0.8 times the signal frequency) was also present. Signal frequencies of 500 or 2000 Hz were investigated. In one condition of the first experiment, the signal was exactly the same 10-Hz-wide noise band as the masker, added to the masker in phase. This condition was designed to limit the availability of cues based upon dip listening, suppression, beating, or across-frequency differences in noise envelope correlation, but to afford a cue based upon across-frequency envelope amplitude difference. The narrow-band noise signal resulted in approximately the same magnitude of comodulated masking release (CMR) as was found for a pure-tone signal. This result suggested that one important cue for CMR is an across-frequency difference in envelope amplitude. Stimulus conditions in the second experiment were intended to disrupt cues of across-frequency envelope amplitude difference, but to afford cues based upon across-frequency differences in noise envelope correlation. In this experiment, cues based upon envelope amplitude were impoverished by randomly varying the level of the flanking band from interval to interval, and by adjusting the level in the on-signal band to be the same in the nonsignal intervals as the level of noise plus signal in the signal interval. Again, substantial CMRs occurred, suggesting that another cue for CMR may be envelope pattern or correlation. The results of these experiments indicated that CMR is probably based upon more than one stimulus variable.  相似文献   

3.
The threshold for a signal masked by a narrow band of noise centered at the signal frequency (the on-frequency band) may be reduced by adding to the masker a second band of noise (the flanking band) whose envelope is correlated with that of the first band. This effect is called comodulation masking release (CMR). These experiments examine two questions. (1) How does the CMR vary with the number and ear of presentation of the flanking band(s)? (2) Is it possible to obtain a CMR when a binaural masking level difference (BMLD) is already present, and vice versa? Thresholds were measured for a 400-ms signal in a continuous 25-Hz-wide noise centered at signal frequencies (fs) of 250, 1000, and 4000 Hz. This masker was presented either alone or with one or more continuous flanking bands whose envelopes were either correlated or uncorrelated with that of the on-frequency band; their frequencies ranged from 0.5fs to 1.5fs. CMRs were measured for six conditions in which the signal, the on-frequency band, and the flanking band(s) were presented in various monaural and binaural combinations. When a single flanking band was used, the CMR was typically around 2-3 dB. The CMR increased to 5-6 dB if an additional flanking band was added. The effect of the additional band was similar whether it was in the same ear as the original band or in the opposite ear. At the lowest signal frequency, a large CMR was observed in addition to a BMLD and vice versa. At the highest signal frequency, the extra release from masking was small. The results are interpreted in terms of the cues producing the CMR and the BMLD.  相似文献   

4.
This paper examines some of the factors that can affect the magnitude of comodulation masking release (CMR). In experiment I, psychometric functions were measured for the detection of a 1-kHz sinusoidal signal in a "multiplied" narrow-band noise centered at 1 kHz (reference condition) and the same noise with two comodulated flanking bands added. The functions were slightly steeper for the comodulated than for the reference masker. Thus CMRs measured at a high percent correct point were slightly (0.4 dB) larger than CMRs measured at a low percent correct point. Large individual differences were found for the reference masker but not for the comodulated masker. Experiment II compared CMRs obtained with narrow-band Gaussian noise and multiplied noise, using a single flanking band. For a flanking band remote from the signal frequency, the CMRs were smaller and more variable for the multiplied noise than for the Gaussian noise. This variability arose mainly from individual differences in the reference condition. Experiment III compared growth-of-masking functions for a signal centered in Gaussian noise and multiplied noise. Thresholds were lower for the multiplied than for the Gaussian noise, and the differences were greatest at high noise levels. The results are consistent with the idea that, for multiplied noise, some subjects can detect a change in the distribution of the envelope of the stimulus, when the signal is added to the masker. Such subjects have low thresholds in the reference condition, and give small CMRs. Other subjects are relatively insensitive to this cue. They have higher thresholds in the reference condition, and give larger CMRs. For Gaussian noise, thresholds for the reference condition are relatively stable across subjects and CMRs tend to be substantial, even for flanking-band frequencies remote from the signal frequency.  相似文献   

5.
The detectability of a pure-tone signal masked by a band of noise centered on the signal can be improved by the addition of flanking noise bands, provided that the temporal envelopes of the flanking bands are correlated with that of the on-signal band. This phenomenon is referred to as comodulation masking release (CMR). The present study examined CMR in conditions in which some flanking noise bands were comodulated with the on-signal band, but other flanking bands (termed "deviant" bands) were not. Past research has indicated that CMR is often substantially reduced when deviant bands are present at spectral locations close to the signal frequency. An investigation was undertaken to determine whether the disruptive effects of such bands could be reduced by factors related to auditory grouping. The signal frequency was 100 Hz. In one condition, only 20-Hz-wide comodulated bands, centered on 400, 600, 800, 1000, 1200, 1400, and 1600 Hz, were present. The CMR for this condition, referenced to threshold for the on-signal band only, was approximately 15 dB. In a second condition, two deviant bands were added at 900 and 1100 Hz; their presence reduced the CMR to only 3-4 dB. The number of deviant bands was then increased progressively, from two to eight bands. Deviant bands either shared a common envelope (codeviant), or had unique envelopes (multideviant). The number of bands that were comodulated with the on-signal band was held constant at six.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Masking noise well separated in frequency from the signal may improve the detectability of the signal if the masking noise is modulated. This effect is referred to as co-modulation masking release (CMR). The present experiments examine the effect of across-frequency differences in masking noise level on CMR. Three experiments were performed, each using a different method to create modulated noise stimuli having across-frequency differences in the spectrum level. All stimulation was monaural. Experiment I used a notched noise method (selectively reducing the level for the critical band centered on the signal). Experiment II used a method in which the level of a 100-Hz-wide masker centered on the signal was varied, and flanking noise bands were of constant level. Experiment III used a method in which flanking noise bands were varied in level, and the 100-Hz-wide masker centered on the signal was of constant level. The signal was a 1000-Hz, 300-ms pure tone. The CMR effect was negated by small spectral notches centered on the signal (experiment I). However, CMR proved to be relatively robust to across-frequency level differences in experiments II and III (a CMR effect occurred for across-frequency differences in spectrum level as great as 20 dB). Low CMR's obtained in experiment I were probably due to relatively poor correlation of across-frequency modulation pattern which occurred with notched noise. The results of experiments II and III suggest that the fluctuation pattern is of primary importance in providing release from masking, and that information on absolute levels, coded across frequency, is of less importance.  相似文献   

7.
These experiments were intended to determine whether comodulation masking release (CMR) occurs for maskers that are modulated in frequency rather than in amplitude. In experiment I, thresholds for a sinusoidal signal were measured in the presence of two continuous sinusoidal maskers: one was centered at the signal frequency (1.0 kHz), and the other was positioned at flanking frequencies ranging from 0.5 to 2.0 kHz. The two maskers were frequency modulated (FM) by the same low-pass-noise modulator (correlated condition) or by independent noise modulators (uncorrelated condition). Thresholds were the same for the correlated and uncorrelated maskers, i.e., no CMR occurred. This was also true when the flanking band was presented in the ear opposite to that containing the signal and the on-frequency masking band. In experiment II, 25-Hz-wide noise maskers were used. The on-frequency band was sinusoidally frequency modulated, while the off-frequency band either had the same FM or no FM. Thresholds were similar for the two conditions, again indicating that no CMR occurred. The results suggest that, unlike amplitude modulation, correlated FM of the masker in different frequency bands does not give rise to a release from masking.  相似文献   

8.
In experiment I, thresholds for 400-ms sinusoidal signals were measured in the presence of a continuous 25-Hz-wide noise centered at signal frequencies (fs) ranging from 250 to 8000 Hz in 1-oct steps. The masker was presented either alone or together with a second continuous 25-Hz-wide band of noise (the flanking band) whose envelope was either correlated with that of the on-frequency band or was uncorrelated; its center frequency ranged from 0.5 fs to 1.5 fs. The flanking band was presented either in the same ear (monotic condition) as the signal plus masker or in the opposite ear (dichotic condition). The on-frequency band and the flanking band each had an overall level of 67 dB SPL. The comodulation masking release, CMR (U-C), is defined as the difference between the thresholds for the uncorrelated and correlated conditions. The CMR (U-C) showed two components: a broadly tuned component, occurring at all signal frequencies and all flanking-band frequencies, and occurring for both monotic and dichotic conditions; and a component restricted to the monotic condition and to flanking-band frequencies close to fs. This sharply tuned component was small for low signal frequencies, increased markedly at 2000 and 4000 Hz, and decreased at 8000 Hz. Experiment II showed that the sharply tuned component of the CMR (U-C) was slightly reduced in magnitude when the level of the flanking band was 10 dB above that of the on-frequency band and was markedly reduced when the level was 10 dB below, whereas the broadly tuned component and the dichotic CMR (U-C) were only slightly affected. Experiment III showed that the sharply tuned component of the CMR (U-C) was markedly reduced when the bandwidths of the on-frequency and flanking bands were increased to 100 Hz, while the broadly tuned component and the dichotic CMR (U-C) decreased only slightly. The argument here is that the sharply tuned component of the monotic CMR (U-C) results from beating between the "carrier" frequencies of the two masker bands. This introduces periodic zeros in the masker envelope, which facilitate signal detection. The broadly tuned component, which is probably a "true" CMR, was only about 3 dB.  相似文献   

9.
The first part of this paper presents several experiments on signal detection in temporally modulated noise, yielding a general approach toward the concept of comodulation masking release (CMR). Measurements were made on masked thresholds of both long- and short-duration, narrow-band signals presented in a 100% sinusoidally amplitude-modulated (SAM) noise masker (modulation frequency 32 Hz), as a function of masker bandwidth from 1/3 oct up to 13/3 octs, while the masker band was geometrically centered at signal frequency. With the short-duration signals placed in the valley of the masker, a substantial CMR (i.e., a decrease of masked threshold with increasing masker bandwidth) was found, whereas for the long-duration signals CMR was smaller. Furthermore, investigations were carried out to determine whether CMR changes when the bandwidth of the signals, consisting of bandpass impulse responses, is increased. The data indicate that substantial CMR remains even when all masker bands contain a signal component, thus minimizing across-channel differences. This finding is not in line with current models accounting for the CMR phenomenon. The second part of this paper concerns signal detection in spectrally shaped noise. Also investigated was whether release from masking occurs for the detection of a pure-tone signal at a valley or a peak of a simultaneously presented masking noise with a sinusoidally rippled power spectrum, when this masker was preceded and followed by a second noise (temporal flanking burst) with an identical spectral shape as the on-signal noise. Similar to CMR effects for temporal modulations, the data indicate that coshaping masking release (CSMR) occurs when the signal is placed in a valley of the spectral envelope of the masker, whereas no release from masking is found when the signal is placed at a peak of the spectral envelope of the masker. The implications of these experiments for measures of spectral and temporal resolution are discussed.  相似文献   

10.
Experiments and model calculations were performed to study the influence of within-channel cues versus across-channel cues in comodulation masking release (CMR). A class of CMR experiments is considered that are characterized by a single (unmodulated or modulated) bandpass noise masker with variable bandwidth centered at the signal frequency. A modulation-filterbank model suggested by Dau et al. [J. Acoust. Soc. Am. 102, 2892-2905 (1997)] was employed to quantitatively predict the experimental data. Effects of varying masker bandwidth, center frequency, modulator bandwidth, modulator type, and signal duration on CMR were examined. In addition, the effect of band limiting the noise before or after modulation was shown to influence the CMR in the same way as a systematic variation of the modulation depth. It is demonstrated that a single-channel analysis, which analyzes only the information from one peripheral channel, quantitatively accounts for the CMR in most cases, indicating that an across-channel process is generally not necessary for simulating results from this class of CMR experiments. True across-channel processes may be found in another class of CMR experiments.  相似文献   

11.
Comodulation masking release (CMR) refers to an improvement in the detection threshold of a signal masked by noise with coherent amplitude fluctuation across frequency, as compared to noise without the envelope coherence. The present study tested whether such an advantage for signal detection would facilitate the identification of speech phonemes. Consonant identification of bandpass speech was measured under the following three masker conditions: (1) a single band of noise in the speech band ("on-frequency" masker); (2) two bands of noise, one in the on-frequency band and the other in the "flanking band," with coherence of temporal envelope fluctuation between the two bands (comodulation); and (3) two bands of noise (on-frequency band and flanking band), without the coherence of the envelopes (noncomodulation). A pilot experiment with a small number of consonant tokens was followed by the main experiment with 12 consonants and the following masking conditions: three frequency locations of the flanking band and two masker levels. Results showed that in all conditions, the comodulation condition provided higher identification scores than the noncomodulation condition, and the difference in score was 3.5% on average. No significant difference was observed between the on-frequency only condition and the comodulation condition, i.e., an "unmasking" effect by the addition of a comodulated flaking band was not observed. The positive effect of CMR on consonant recognition found in the present study endorses a "cued-listening" theory, rather than an envelope correlation theory, as a basis of CMR in a suprathreshold task.  相似文献   

12.
Comodulation masking release for a 700-Hz pure-tone signal was investigated as a function of the number and spectral positions of 20-Hz-wide comodulated flanking bands. In the first experiment, all stimuli were presented diotically. CMR was examined as a function of the number of flanking bands present, in conditions where the bands were arranged symmetrically around the signal frequency, were below the signal frequency, or were above the signal frequency. The number of flanking bands ranged from one to eight, and the magnitude of the diotic CMR ranged from approximately 5-16 dB. The results indicated: (1) bands closer to the signal resulted in larger masking release, and (2) more bands gave rise to larger CMR (but with diminishing returns above two flanking bands). Two additional sets of diotic conditions were examined and compared to the condition where all eight comodulated flanking bands were present: In one set of conditions, two of the eight flanking bands were removed; in the other set of conditions, two of the eight flanking bands were replaced with bands (termed "deviant" bands) that were not comodulated with respect to the other bands. There was very little effect of reducing eight bands to six, even when the removed bands were relatively near the signal frequency; however, CMR was substantially reduced when deviant bands were introduced, particularly when the deviant bands were placed relatively near the signal frequency. These reductions in CMR were slightly greater when each of the deviant bands had a unique modulation pattern (bideviant bands) than when the two deviant bands themselves shared the same modulation pattern (codeviant bands). In the second experiment, dichotic conditions were examined where the number and spectral positions of the flanking bands in the nonsignal ear were varied (the signal ear received only a 20-Hz-wide noise band centered on the signal frequency). The magnitude of the dichotic CMR ranged from approximately 2-10 dB, depending on condition. Effects of proximity and the number of flanking bands were similar to the effects obtained in diotic conditions. For both the diotic and the dichotic data, the effects of proximity were more consistent with an interpretation based upon across-channel processing than upon a within-channel interaction. The results obtained using deviant bands indicate that it is difficult for the auditory system to disregard the modulation pattern of flanking bands that differ from the modulation pattern of the on-signal band, particularly if such bands are proximal to the signal frequency.  相似文献   

13.
Experiment 1 examined comodulation masking release (CMR) for a 700-Hz tonal signal under conditions of N(o)S(o) (noise and signal interaurally in phase) and N(o)S(π) (noise in phase, signal out of phase) stimulation. The baseline stimulus for CMR was either a single 24-Hz wide narrowband noise centered on the signal frequency [on-signal band (OSB)] or the OSB plus, a set of flanking noise bands having random envelopes. Masking noise was either gated or continuous. The CMR, defined with respect to either the OSB or the random noise baseline, was smaller for N(o)S(π) than N(o)S(o) stimulation, particularly when the masker was continuous. Experiment 2 examined whether the same pattern of results would be obtained for a 2000-Hz signal frequency; the number of flanking bands was also manipulated (two versus eight). Results again showed smaller CMR for N(o)S(π) than N(o)S(o) stimulation for both continuous and gated masking noise. The CMR was larger with eight than with two flanking bands, and this difference was greater for N(o)S(o) than N(o)S(π). The results of this study are compatible with serial mechanisms of binaural and monaural masking release, but they indicate that the combined masking release (binaural masking-level difference and CMR) falls short of being additive.  相似文献   

14.
These experiments examine how comodulation masking release (CMR) varies with masker bandwidth, modulator bandwidth, and signal duration. In experiment 1, thresholds were measured for a 400-ms, 2000-Hz signal masked by continuous noise varying in bandwidth from 50-3200 Hz in 1-oct steps. In one condition, using random noise maskers, thresholds increased with increasing bandwidth up to 400 Hz and then remained approximately constant. In another set of conditions, the masker was multiplied (amplitude modulated) by a low-pass noise (bandwidth varied from 12.5-400 Hz in 1-oct steps). This produced correlated envelope fluctuations across frequency. Thresholds were generally lower than for random noise maskers with the same bandwidth. For maskers less than one critical band wide, the release from masking was largest (about 5 dB) for maskers with low rates of modulation (12.5-Hz-wide low-pass modulator). It is argued that this release from masking is not a "true" CMR but results from a within-channel cue. For broadband maskers (greater than 400 Hz), the release from masking increased with increasing masker bandwidth and decreasing modulator bandwidth, reaching an asymptote of 12 dB for a masker bandwidth of 800 Hz and a modulator bandwidth of 50 Hz. Most of this release from masking can be attributed to a CMR. In experiment 2, the modulator bandwidth was fixed at 12.5 Hz and the signal duration was varied. For masker bandwidths greater than 400 Hz, the CMR decreased from 12 to 5 dB as the signal duration was decreased from 400 to 25 ms.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
A series of four experiments was undertaken to ascertain whether signal threshold in frequency-modulated noise bands is dependent upon the coherence of modulation. The specific goal was to determine whether a masking release could be obtained with frequency modulation (FM), analogous to the comodulation masking release (CMR) phenomenon observed with amplitude modulation (AM). It was hypothesized that an across-frequency grouping process might give rise to such an effect. In experiments 1-3, maskers were composed of three noise bands centered on 1600, 2000, and 2400 Hz; these were either comodulated or noncomodulated with respect to both FM and AM. In experiment 1, the modulation was sinusoidal, and the signal was a 2000-Hz pure tone; in experiment 2, the modulation was random, and the signal was an FM noise band centered on 2000 Hz. The results obtained showed that, given sufficient width of modulation, thresholds were lower in a coherent FM masker than in an incoherent FM masker, regardless of the pattern of AM or signal type. However, thresholds in multiband maskers were usually elevated relative to that in a single-band masker centered on the signal. Experiment 3 demonstrated that coherent FM could be discriminated from incoherent FM. Experiment 4 gave similar patterns of results to the respective conditions of experiments 2 and 3, but for an inharmonic masker with bands centered on 1580, 2000, and 2532 Hz. While within-channel processes could not be entirely excluded from contributing to the present results, the experimental conditions were designed to be minimally conducive to such processes.  相似文献   

16.
The aim of this study was to examine whether the scheme of across-frequency comparison underlying comodulation masking release (CMR) is sensitive to the placement of the signal in the array of comodulating bands. This was addressed using the paradigm of signal-frequency uncertainty. In the first experiment, maskers were constructed of linearly spaced sinusoidally amplitude-modulated tones, and the signal was a pure tone presented at one of five frequencies. A small uncertainty effect was observed for the noncomodulated masker, but no significant effect was observed for the comodulated masker. In the second experiment, the maskers were constructed of logarithmically spaced noise bands, and the signal was a pure tone presented at one of seven frequencies. In these conditions, an uncertainty effect was observed in both noncomodulated and comodulated maskers, which was larger than that observed in experiment 1. The results were interpreted as indicating that the mechanism of across-frequency comparison underlying CMR is sensitive to signal location.  相似文献   

17.
The relation between the monaural critical band and binaural analysis was examined using an NoSm MLD paradigm, in order to resolve ambiguities about the width of the masking spectrum important for binaural detection. A 500-Hz pure-tone signal was presented with a 600-Hz-wide band of masking noise to the signal ear. Bands of noise ranging in width from 25 to 600 Hz, or noise notches (imposed on a 600-Hz-wide band centered on the signal frequency) ranging in width from 0 to 600 Hz were presented to the nonsignal ear. All noise bands and notches were centered on 500 Hz, the frequency of the signal. The effects of varying bandwidth were radically different from those of varying notchwidth: the MLD changed from zero to approximately 8 dB over a bandwidth range of 400 Hz; for notchwidths, however, the MLD changed 8 dB over a range of only 50 Hz. The results support an interpretation that the fine frequency selectivity of monaural analysis is preserved in peripheral binaural interaction, but that a relatively wide frequency range of critical bands is scanned at a later stage of binaural processing. It was suggested that the wide spectral range of binaural analysis may provide a background against which binaural differences due to the signal are detected.  相似文献   

18.
A series of experiments was performed to study the ability of the ear to code the temporal envelope of a waveform as demonstrated by comodulation masking release (CMR). The stimulus for all experiments was composed of a tone-burst signal, a 100-Hz-wide masker band centered at the signal frequency, and a second 100-Hz-wide noise band of variable frequency, the cue band. The cue band had a temporal envelope which was either correlated with or independent of that of the masker. The signal was a 100-Hz tone burst for most experiments. For the monotic stimulus, the correlated cue band results in lowered signal detection thresholds over a range extending from around 2/3 oct below the signal frequency to 1/3 oct above that frequency. When measured dichotically, with the signal and masker band in one ear and the cue band in the opposite ear, that effective range is expanded but the detection threshold shifts are a bit smaller. The greatest CMR is observed when the stimulus is presented diotically. With regard to effects of level and frequency, our data show CMR increasing with increasing stimulus level for a cue band lower in frequency than the signal, but show little effect of level for a cue band higher in frequency. Similarly, CMR increases with increasing stimulus frequency when the cue band is lower in frequency, but shows little effect of frequency for a cue band higher in frequency.  相似文献   

19.
Modulation thresholds were measured in three subjects for a sinusoidally amplitude-modulated (SAM) wideband noise (the signal) in the presence of a second amplitude-modulated wideband noise (the masker). In monaural conditions (Mm-Sm) masker and signal were presented to only one ear; in binaural conditions (M0-S pi) the masker was presented diotically while the phase of modulation of the SAM noise signal was inverted in one ear relative to the other. In experiment 1 masker modulation frequency (fm) was fixed at 16 Hz, and signal modulation frequency (fs) was varied from 2-512 Hz. For monaural presentation, masking generally decreased as fs diverged from fm, although there was a secondary increase in masking for very low signal modulation frequencies, as reported previously [Bacon and Grantham, J. Acoust. Soc. Am. 85, 2575-2580 (1989)]. The binaural masking patterns did not show this low-frequency upturn: binaural thresholds continued to improve as fs decreased from 16 to 2 Hz. Thus, comparing masked monaural and masked binaural thresholds, there was an average binaural advantage, or masking-level difference (MLD) of 9.4 dB at fs = 2 Hz and 5.3 dB at fs = 4 Hz. In addition, there were positive MLDs for the on-frequency condition (fm = fs = 16 Hz: average MLD = 4.4 dB) and for the highest signal frequency tested (fs = 512 Hz: average MLD = 7.3 dB). In experiment 2 the signal was a SAM noise (fs = 16 Hz), and the masker was a wideband noise, amplitude-modulated by a narrow band of noise centered at fs. There was no effect on monaural or binaural thresholds as masker modulator bandwidth was varied from 4 to 20 Hz (the average MLD remained constant at 8.0 dB), which suggests that the observed "tuning" for modulation may be based on temporal pattern discrimination and not on a critical-band-like filtering mechanism. In a final condition the masker modulator was a 10-Hz-wide band of noise centered at the 64-Hz signal modulation frequency. The average MLD in this case was 7.4 dB. The results are discussed in terms of various binaural capacities that probably play a role in binaural release from modulation masking, including detection of varying interaural intensity differences (IIDs) and discrimination of interaural correlation.  相似文献   

20.
It is often assumed that listeners detect an increment in the intensity of a pure tone by detecting an increase in the energy falling within the critical band centered on the signal frequency. A noise masker can be used to limit the use of signal energy falling outside of the critical band, but facets of the noise may impact increment detection beyond this intended purpose. The current study evaluated the impact of envelope fluctuation in a noise masker on thresholds for detection of an increment. Thresholds were obtained for detection of an increment in the intensity of a 0.25- or 4-kHz pedestal in quiet and in the presence of noise of varying bandwidth. Results indicate that thresholds for detection of an increment in the intensity of a pure tone increase with increasing bandwidth for an on-frequency noise masker, but are unchanged by an off-frequency noise masker. Neither a model that includes a modulation-filter-bank analysis of envelope modulation nor a model based on discrimination of spectral patterns can account for all aspects of the observed data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号