首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
单晶生长炉全局热分析(2)-非定常三维流动的影响   总被引:1,自引:1,他引:0  
本文应用既有非定常三维全局热分析模型,通过大量的数值模拟,研究了单晶生长炉中熔液对流三维性和非定常性对熔体流动和全局热分析等影响.研究表明:熔液流动的三维性和非定常性起着非常重要的作用,它使品体成长界面发生转变的Re数大大降低,使模礅结果更接近实际.同时,研究揭示了熔液内行进波的存在和其传播规律.  相似文献   

2.
为了了解水平温度梯度作用时Czochralski结构浅池内硅熔体热对流的分岔特性,利用有限差分法进行了非稳态三维数值模拟,坩埚外壁被加热,液池深度为3 mm.模拟结果表明,当逐渐增加温差时,会发生两次流型转变,第一次由二维轴对称流动转变为三维稳态流动,第二次由三维稳态流动转变为热流体波,其可能沿顺时针方向旋转、也可能沿逆时针方向旋转,同时,第二次转变存在分岔现象.  相似文献   

3.
为了了解微重力下液封液桥内热毛细对流的基本特性,利用有限差分法进行了非稳态三维数值模拟,液桥高为(1-3)mm,直径为2mm和3 mm,液封外直径为(4-7)mm。模拟结果表明,当Marangoni数较小时,液封液桥内的热毛细对流为稳定的轴对称运动,当Marangoni数超过某一临界值后,流动将转化为三维振荡流动;为此,确定了发生振荡的临界Marangoni数,分析了各种条件下热毛细对流的振荡特性,计算了相应的振荡频率。  相似文献   

4.
本文在平坦自由表面非定常三维全局热分析模型的基础上,考虑自由表面形状的弯曲性,通过大量数值模拟,研究了弯曲自由表面对熔液流动、炉内全局温度场分布等的影响.研究表明:弯曲自由表面更易引起熔液流动振荡,且降低晶体生长界面反转的临界Re数,使结果更接近实际,从而使单晶生长全局热分析模型比前文更完善.  相似文献   

5.
利用有限元法对勾形磁场环境下硅单晶Czochralski生长时炉内的传递过程进行了全局数值模拟,磁场强度范围为(0~2.0)T.结果表明:勾形磁场可有效抑制熔体内的流动;随着磁场强度增加,熔体内对流逐渐减弱,加热器功率增大,结晶界面温度梯度在磁场强度为0.05T时略有降低,之后增加;结晶界面形状在磁场强度为0.05T和0.1T时向熔体侧弯曲,之后随磁场的增加,变得平坦;同时,熔体内的传质机制逐渐转为以扩散为主;结晶界面平均氧浓度随磁场强度的增加而逐渐降低,当磁场强度高于1.0T时,结晶界面氧浓度会略有上升.  相似文献   

6.
铝电解槽内湍流流动与界面波动的数值模拟   总被引:8,自引:0,他引:8  
黄兆林  杨志峰 《计算物理》1994,11(2):179-184
建立了模拟铝电解槽内电解液和铝熔液湍流流及两层熔液界面波动的数学模型,利用交错网格上的一种基于SIMPLE算法的改形格式,计算了280kA电解槽内两层熔液的流动状况与界面形状。  相似文献   

7.
环形浅液池内中等Pr数流体的热毛细对流   总被引:2,自引:1,他引:1  
为了了解微重力下水平温度梯度作用时环形浅液池内的热毛细对流特性,利用有限差分法进行了非稳态二维数值模拟,环形液池外壁被加热,内壁被冷却,流体为 0.65 cSt的硅油,其Pr 数为 6.7。结果表明,当温度梯度较小时,流动为稳态流动,随着温度梯度的增加,流动将会失去其稳定性,转化成各种振荡流动,模拟结果与实验结果基本吻合。  相似文献   

8.
用有限元法对轴向磁场存在下3英寸磷化铟单晶液封提拉法生长中的传热和流动进行了求解.结果表明:液封改变了晶体表面被封部分的换热,进而影响生长界面的形状.增加磁场强度能有效减弱熔体和封层内的流动,并使生长界面形状发生变化。增加提拉速度,生长界面形状由凸变凹.随晶体转速的增加,多涡胞流动出现.  相似文献   

9.
为了了解浮力的影响,对水平温度梯度作用时环形液池内的热毛细对流进行了非稳态三维数值模拟,环形液池外壁被加热,半径为40 mm,内壁被冷却,半径为20 mm,液池深度为(1-17)mm,流体为0.65cSt的硅油,其Pτ数为6.7.模拟结果表明,当水平温度梯度较小时,流动为轴对称稳态流动,随着温度梯度的增加,流动将会失去其稳定性,在浅液池内,转化为热流体波,浮力对失稳后的流型无影响,但会使热流体波的振幅下降;在深液池内,在常重力条件下,转化成三维稳定流动,在微重力和小重力条件下,转化为三维振荡流动.  相似文献   

10.
为了了解径向温度梯度作用下环形浅液池内硅熔体热毛细对流的热力学特性,利用有限差分法进行了非稳态三维数值模拟。液池外半径r0=50 mm,内半径ri=15 mm,深度为d=3 mm。结果表明,当温度梯度较小时,流动为稳定轴对称流动,系统总熵产较小;随着温度梯度的增加,流动将失去其稳定性,首先转化为径向脉动波,此时系统总熵产呈周期性变化;温度梯度再增加时,流动转化为热流体波,系统总熵产较大,但不再随时间变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号