首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
We study the manipulation of quantum entanglement by periodic external fields. As an entanglement measure we compute numerically the concurrence of two coupled superconducting qubits both driven by a dc + ac external control parameter. We show that when the driving term of the Hamiltonian commutes with the qubit–qubit interaction term, it is possible to create or destroy entanglement in a controlled way by tuning the system at or near multiphoton resonances. On the other hand, when the driving does not commute with the qubit–qubit interaction, the control and generation of entanglement induced by the driving field is more robust and extended in parameter space, beyond the multiphoton resonances.  相似文献   

2.
We investigate the bipartite entanglement dynamics of the systemcomposed by three qubits A, B, and C. There is no interaction betweenA and B, and that of C and B is Dzyaloshinskii-Moriya (DM) spin-orbit interaction. We find that the purity of qubits A and B and the initial state of the qubit C are the two effective parameters to control the entanglement dynamics of the bipartite subsystems. This study sheds some lights on the control of quantum entanglement, which would be helpful for quantum information processing.  相似文献   

3.
本文利用绝热近似方法和精确对角化方法研究三量子比特Dicke模型中的纠缠动力学.处于两种典型的纠缠态GHZ态和W态上的量子比特在时间演化过程中与辐射光场发生强耦合作用,在各种子系统间产生纠缠,通过分析这些纠缠的演化特性发现初始GHZ态的三体纠缠鲁棒性比W态强,这与旋波近似结论一致.与旋波近似下结果不同的是,两种态中任意一对量子比特间的纠缠都随时间演化到几乎为零,而三体纠缠随时间周期演化,且纠缠程度相对较强,说明系统中的强耦合作用通过抑制量子比特中的对纠缠来支持三体纠缠.  相似文献   

4.

Considering the generalized double Jaynes-Cummings model, we examine the entanglement between two non-identical dipole-dipole coupled qubits interacting with two independent detuned vacuum cavity modes. We calculate the negativity as a measure of qubits entanglement. We find that entanglement parameter evolve periodically with time and the period are affected by the model parameters and initial states of qubits. For unentangled initial states the detuning and dipole-dipole interaction affect only the period of entanglement oscillations, not the maximum value of entanglement. For entangled states the detuning stabilizes the entanglement parameter oscillations. According to choice of initial entangled state the dipole-dipole strength is greatly enhances or weakens the oscillations of the entanglement parameter.

  相似文献   

5.
We investigate the entanglement dynamics of two interacting qubits in a spin environment, which is described by an XY model with Dzyaloshinsky-Moriya (DM) interaction. The competing effects of environmental noise and interqubit coupling on entanglement generation for various system parameters are studied. We find that the entanglement generation is suppressed remarkably in weak-coupling region at quantum critical point (QCP). However, the suppression of the entanglement generation at QCP can be compensated both by increasing the DM interaction and by decreasing the anisotropy of the spin chain. Beyond the weak-coupling region, there exist resonance peaks of concurrence when the system-bath coupling equals to external magnetic field. We attribute the presence of resonance peaks to the flat band of the self-Hamiltonian. These peaks are highly sensitive to anisotropy parameter and DM interaction.  相似文献   

6.
张修兴  李福利 《中国物理 B》2011,20(11):110302-110302
The correlation dynamics are investigated for various bi-partitions of a composite quantum system consisting of two qubits and two independent and non-identical noisy environments. The two qubits have no direct interaction with each other and locally interact with their environments. Classical and quantum correlations including the entanglement are initially prepared only between the two qubits. We find that contrary to the identical noisy environment case, the quantum correlation transfer direction can be controlled by combining different noisy environments. The amplitude-damping environment determines whether there exists the entanglement transfer among bi-partitions of the system. When one qubit is coupled to an amplitude-damping environment and the other one to a bit-flip one, we find a very interesting result that all the quantum and the classical correlations, and even the entanglement, originally existing between the qubits, can be completely transferred without any loss to the qubit coupled to the bit-flit environment and the amplitude-damping environment. We also notice that it is possible to distinguish the quantum correlation from the classical correlation and the entanglement by combining different noisy environments.  相似文献   

7.
The paper investigates the estimation of the disorder degree of the classical static noise using three entangled qubits as quantum probes together with the tools of local quantum estimation theory. Three probing schemes namely common environment (CE), independent environments (IEs) and mixed environments (MEs) are investigated and the optimal initial state preparation of the probes taken as a partially depolarized GHZ state. The results show that: (i) the IEs probing scheme allows one to achieve better estimation precision compared to both MEs and CE schemes respectively; (ii) the higher is the initial amount of entanglement of the probes, the larger is the estimation precision, independently of the scheme considered; (iii) both small and large values of the disorder parameter are uniformly estimable at the optimal interaction time; (iv) entangled qubits probes quickly encode information about the disorder parameter than single-qubit probe; (v) there is an improvement in the estimation of the disorder parameter when entangled probes interacting either in IEs or MEs are used instead of a single probe, demonstrating that a single probe is not sufficient to optimally estimate the disorder parameter of the static noise. On the other hand, we have also investigated the relationship between the residual amount of entanglement present in the probes at the optimal interaction time and the estimation precision of the disorder parameter. We show that the higher the residual amount of entanglement at the optimal interaction time, the smaller the estimation precision.  相似文献   

8.
The evolution of entanglement decoherence is investigated for a coupled superconducting qubit under non-Markovian environment by utilizing a commensal entanglement degree. The results show that, owing to the memory feedback effect of environment, the entanglement degree of the coupled qubits at the thermal equilibrium always monotonously tends to zero so that entanglement sudden death occurs briefly in the non-Markovian process. Different from the Markovian process, stronger the dissipation is, faster the entanglement sudden death is. We find that, furthermore, the interaction between the qubits results generally in reduction of entanglement degree in the quantum system. With some special initial states or initial phase angles, however, the influence of the interaction between qubits on the system entanglement degree can be avoided.  相似文献   

9.
We investigate the experimental feasibility of realizing quantum information transfer (QIT) and entanglement with SQUID qubits in a microwave cavity via dark states. Realistic system parameters are presented. Our results show that QIT and entanglement with two-SQUID qubits can be achieved with a high fidelity. The present scheme is tolerant to device parameter nonuniformity. We also show that the strong coupling limit can be achieved with SQUID qubits in a microwave cavity. Thus, cavity-SQUID systems provide a new way for production of nonclassical microwave source and quantum communication.  相似文献   

10.
We investigate the quantum discord of coupled qubits in squeezed vacuum reservoir and compare it with the quantum entanglement of system. We find that the quantum discord and entanglement perform completely oppositely with the change of squeezed parameters. Quantum discord survives longer with the increase of squeezed amplitude parameter and entanglement death faster on the contrary. Under high squeezed amplitude parameter, the quantum discord can keep nonzero which indicate that the quantum discord is more robust than entanglement. We also find that the purity reduction of the initial quantum state will lead to the decay of concurrence or quantum discord. However, the quantum discord damps remarkably more slowly and survives longer than concurrence.  相似文献   

11.
Dynamic evolution of entanglement is studied for coupling two-qubit system in non-Markov environment in terms of concurrence. We find that the degree of entanglement depends on the initial quantum state of the system and the interaction between the two-qubit system and the environment. When the interaction between the qubits and the environment is completely symmetric, especially, the environment has no effect on the entanglement, where the decoherence is entirely resulted from the interaction between qubits. By controlling the coupling way of the interaction, thus, one may avoid the entanglement sudden death (ESD).  相似文献   

12.
Y.H. Ji  W.D. Li  S.J. Wen 《Optik》2013,124(24):6882-6886
The paper investigates the dynamic evolution behaviors of entanglement and quantum discord of coupled superconducting qubits in circuit QED system. We put emphasis on the effects of cavity field quantum state on quantum entanglement and quantum correlations dynamic behaviors of coupling superconducting qubits. The results show that, (1) generally speaking, the entanglement will appear the death and new birth because of the interaction between qubits and cavity field, on the contrary, this phenomenon will not appear in quantum discord. (2) When the cavity field is in coherent state, the entanglement survival time is controlled by the average photon number. The more the average photon number is, the longer survival time of entanglement is prolonged. Thus it has the benefit of keeping quantum correlations. (3) When the cavity field is in squeezed state, the squeezed amplitude parameters have controlling effects on quantum correlations including entanglement and quantum discord. On the one hand, the increase of squeezed amplitude parameters can prolong the survival time of entanglement, on the other hand, with the increase of squeezed amplitude parameters, the robustness of quantum discord is more and more superior to concurrence and is more advantage to keep the system quantum correlations. The further study results show that the increase of the initial relative phase of coupling superconducting qubits can also keep the quantum correlations.  相似文献   

13.
This article aims to review the developments, both theoretical and experimental, that have in the past decade laid the ground for a new approach to solid state quantum computing. Measurement‐based quantum computing (MBQC) requires neither direct interaction between qubits nor even what would be considered controlled generation of entanglement. Rather it can be achieved using entanglement that is generated probabilistically by the collapse of quantum states upon measurement. Single electronic spins in solids make suitable qubits for such an approach, offering long coherence times and well defined routes to optical measurement. We will review the theoretical basis of MBQC and experimental data for two frontrunner candidate qubits – nitrogen‐vacancy (NV) centres in diamond and semiconductor quantum dots – and discuss the prospects and challenges that lie ahead in realising MBQC in the solid state.  相似文献   

14.
We investigate the transient spontaneous quantum synchronization between two qubits interacting with a common non-Markovian environment based on a collision model. We are mainly interested in the effect of non-Markovianity on the synchronization between two qubits. We find that the non-Markovianity always delay the anti-synchronization and decrease the parameter region where the qubits get anti-synchronized. Meanwhile, we define V to characterize the visibility of synchronization and show that there is an apparent link among V, entanglement and quantum mutual information whether in the Markovian or non-Markovian regimes when the environment is in the vacuum state. Moreover, with the increase of temperature, the parameter region of the emergence of anti-synchronization and the time to get anti-synchronized in the non-Markovian regime gradually approaches that in the Markovian regime. The high temperature decreases the parameter region of the emergence of anti-synchronization in both Markovian and non-Markovian regimes, and breaks the connection among V, entanglement and quantum mutual information.  相似文献   

15.
The entanglement dynamics of two qubits coupled to a two-leg spin ladder with cyclic interaction is investigated. The entanglement is a periodic function of time and is affected by both the cyclic interaction in the ladder and the exchange interaction between the qubits and the ladder. If the number of spins in the ladder is increased with suitable external magnetic field, the maximum entanglement can exist for quite long time. Thus the entangled states can be stored and even can be “trapped” with high entanglement. The quantum manipulation of quantum states is possible in such systems.  相似文献   

16.
We study systematically the entanglement of a two-qubit Heisenberg XY model in thermal equilibrium in the presence of an external arbitrarily-directed static magnetic field, thereby generalizing our prior work [G. Lagmago Kamta, A.F. Starace, Phys. Rev. Lett. 88, 107901 (2002)]. We show that a magnetic field having a component in the xy-plane containing the spin-spin interaction components produces different entanglement for ferromagnetic (FM) and antiferromagnetic (AFM) couplings. In particular, quantum phase transitions induced by the magnetic field-driven level crossings always occur for the AFM-coupled qubits, but only occur in FM-coupled qubits when the coupling is of Ising type or when the magnetic field has a component perpendicular to the xy-plane. When the magnetic field has a component in the xy-plane, the cut-off temperature above which the entanglement of both the FM- and AFM-coupled qubits vanishes can always be controlled using the magnetic field for any value of the XY coupling anisotropy parameter. Thus, by adjusting the magnetic field, an entangled state of two spins can be produced at any finite temperature. Finally, we find that a higher level of entanglement is achieved when the in-plane component of the magnetic field is parallel to the direction in which the XY exchange coupling is smaller.  相似文献   

17.
Persistent entanglement in arrays of interacting particles   总被引:18,自引:0,他引:18  
We study the entanglement properties of a class of N-qubit quantum states that are generated in arrays of qubits with an Ising-type interaction. These states contain a large amount of entanglement as given by their Schmidt measure. They also have a high persistency of entanglement which means that approximately N/2 qubits have to be measured to disentangle the state. These states can be regarded as an entanglement resource since one can generate a family of other multiparticle entangled states such as the generalized Greenberger-Horne-Zeilinger states of 相似文献   

18.
We study the interaction between a single-mode quantized field and a quantum system composed of two qubits. We suppose that two qubits initially be prepared in the mixed and separable state, and study how entanglement between two qubits arises in the course of evolution according to the Jaynes-Cummings type interaction with nonclassical radiation field. We also investigate the relation between entanglement and purity of qubit subsystem. We show that different photon statistics have different effects on the dynamical behavior of the qubit subsystem. When the qubits are initially prepared in the maximally mixed and separable state, for coherent state field we cannot find entanglement between two qubits; for squeezed state field entanglement between two qubits exists in several short period of time; for even and odd coherent state fields of large photon number, the dynamical behavior of the entanglement between two qubits shows collapse and revival phenomenon. For odd coherent state field of small photon number, the entanglement with both qubits initially prepared in maximally mixed state can be stronger than that with both qubits initially prepared in pure states. For fields of small photon number, the entanglement strongly depends on the states they are initially prepared in. For coherent state field, and odd and even coherent state fields of large photon number, the entanglement only depends on the purity of the initial state of qubit subsystem. We also show that during the evolution the unentangled state may be purer than the entangled state, and the maximum degree of entanglement may not occur at the time when the qubit subsystem is in the purist state.  相似文献   

19.
By means of composite quantum collision models, we study the entanglement dynamics of a bipartite system, i.e.,two qubits S1 and S2 interacting directly with an intermediate auxiliary qubit SA, while SAis in turn coupled to a thermal reservoir. We are concerned with how the intracollisions of the reservoir qubits influence the entanglement dynamics. We show that even if the system is initially in the separated state, their entanglement can be generated due to the interaction between the qubits. In the long-time limit, the steady-state entanglement can be generated depending on the initial state of S1 and S2 and the environment temperature. We also study the dynamics of tripartite entanglement of the three qubits S1,S2, and SAwhen they are initially prepared in the GHZ state and separated state, respectively. For the GHZ initial state,the tripartite entanglement can be maintained for a long time when the collision strength between the environment qubits is sufficiently large.  相似文献   

20.
We study the interaction between a single-mode quantized field and a quantum system composed of two qubits. We suppose that two qubits initially be prepared in the mixed and separable state, and study how entanglement between two qubits arises in the course of evolution according to the Jaynes-Cummings type interaction with nonclassical radiation field. We also investigate the relation between entanglement and purity of qubit subsystem. We show that different photon statistics have different effects on the dynamical behavior of the qubit subsystem. When the qubits are initially prepared in the maximally mixed and separable state, for coherent state field we cannot find entanglement between two qubits; for squeezed state field entanglement between two qubits exists in several short period of time; for even and odd coherent state fields of large photon number, the dynamical behavior of the entanglement between two qubits shows collapse and revival phenomenon. For odd coherent state field of small photon number, the entanglement with both qubits initially prepared in maximally mixed state can be stronger than that with both qubits initially prepared in pure states. For fields of small photon number, the entanglement strongly depends on the states they are initially prepared in. For coherent state field, and odd and even coherent state fields of large photon number, the entanglement only depends on the purity of the initial state of qubit subsystem. We also show that during the evolution the unentangled state may be purer than the entangled state, and the maximum degree of entanglement may not occur at the time when the qubit subsystem is in the purist state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号