首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Here we report on the hybrid nanostructures where a single ZnS nanobelt was half‐covered with an aluminum (Al) film, which is an ideal platform for studying the second‐harmonic generation (SHG) enhancement effects of the Al coating. It was fabricated by the lift‐off process and allowed for the accurate comparison of the SHG intensity between the Al‐covered and the same bare ZnS nanobelt under consistent test conditions. The results indicate that the Al coating in the hybrid nanostructures not only confines the pumping laser in the ZnS effectively, but also concentrates the emitted SHG signal greatly, increasing the signal collection efficiency. By the combination of these two effects, ∼60 times enhancement of the SHG intensity is achieved at the optimized geometry size (width and thickness) of the ZnS nanobelts. The Al‐based hybrid nanostructures open up new possibilities for low‐cost, highly efficient and directional coherent nanolight sources at short wavelengths.

  相似文献   


2.
This article presents a novel III‐V on silicon laser. This work exploits the phenomenon that a passive silicon cavity, side‐coupled to a III‐V waveguide, will provide high and narrow‐band reflectivity into the III‐V waveguide: the resonant mirror. This results in an electrically pumped laser with a threshold current of 4 mA and a side‐mode suppression ratio up to 48 dB.

  相似文献   


3.
In recent years laser light has been used to control the motion of electron waves. Electrons can now be diffracted by standing waves of light. Laser light in the vicinity of nanostructures is used to affect free electrons, for example, femto‐second and atto‐second laser‐induced electrons are emitted from nanotips delivering coherent fast electron sources. Optical control of dispersion of the emitted electron waves, and optically controlled femto‐second switches for ultrafast electron detection are proposed. The first steps towards electron accelerators and matter optics on‐a‐chip are now being taken. New research fields are driven by these new technologies. One example is the optical generation of electron pulses on‐demand and quantum degenerate pulses. Another is the emerging development of interaction free electron microscopy. This review will focus on the field of free electron quantum optics with technologies at the interplay of lasers, electron matter waves, and nanostructures. Questions that motivate their development will also be addressed.

  相似文献   


4.
The terahertz (THz) radiation from InGaN/GaN dot‐in‐a‐wire nanostructures has been investigated. A submicrowatt THz signal is generated with just ten vertically stacked InGaN quantum dots (QDs) in each GaN nanowire. Based on the experimental results and analysis, a single quantum wire is expected to generate an output power as high as 10 pW, corresponding to 1 pW per dot. These structures are among the most efficient three‐dimensional quantum‐confined nanostructures for the THz emission. By applying a reverse bias along the wires in a light‐emitting device (LED) consisting of such nanostructures, the THz output power is increased more than fourfold. Based on THz and photoluminescence (PL) experiments, the mechanism for the THz emission is attributed to dipole radiation induced by internal electric fields and enhanced by external fields.

  相似文献   


5.
Plasmon‐induced hot‐electron generation provides an efficient way to convert light into electric current. The investigation of the optoelectronic response in two‐dimensional materials and metallic hybrid nanostructure attracts increasing research interest. Here, we present a tunneling effect of plasmonic hot electrons that is generated from Au nanoparticles, which can vertically tunnel through graphene monolayers. A strong photocurrent induced by the hot electrons was measured in this graphene‐based vertical photodetector with its intensity maximum reached at the plasmon resonance wavelength. The tunneling effect of plasmonic hot electrons was investigated by gradually increasing the incident laser power and bias voltage between the top and bottom electrodes. The dynamic attenuation of plasmonic hot electrons in an excited state was further investigated with multilayered graphene sheets. These results show that our vertical hybrid structure can function as an effective design for the tunneling photodetector, and enable the realization of complex nanophotonic devices that are based on graphene and other 2D materials, such as optical transistors and plasmonic hot‐electron sensors.

  相似文献   


6.
Inspired from butterfly wings that exhibit unique dewetting properties and brilliant structural color synchronously, we reported here the preparation of biomimetic few‐layer graphene films through a template‐directed chemical vapor deposition method using laser‐structured Cu foil as substrates. Hierarchical micronanostructures, including microscale stripes derived from the laser scanning and nanoscale laser‐induced periodic surface structures (LIPSS), formed on Cu foil after a simple femtosecond laser treatment. By tuning the laser power, the surface roughness of the resultant Cu foils can be well controlled. Using the laser structures Cu foil as templates, biomimetic few‐layer graphene films with both iridescence and superhydrophobicity have been successfully prepared. The present work may open up a new way to design and prepare structured graphene film in a biomimetic manner, and we deem that the bioinspired few‐layer graphene films may find broad applications in the near future.

  相似文献   


7.
The interaction of light with a single gold nanorod (GNR) depends strongly on the polarization and wavelength of the light. For isolated GNRs, the maximum of the polarization (wavelength)‐dependent linear and nonlinear absorption appear at the same excitation polarization (wavelength). Here, it is demonstrated that these relationships can be manipulated in a GNR assembly composed of randomly distributed and oriented GNRs by controlling the plasmonic coupling strength between GNRs. It is revealed that the strongly localized modes resulting from the plasmonic coupling of GNRs play a crucial role in determining these relationships. For a GNR tetramer, it is shown by numerical simulation that the maximum two‐photon absorption achieved at a particular polarization can be switched to the minimum absorption and vice versa by controlling the coupling strength. More importantly, it is demonstrated both numerically and experimentally that the two‐photon‐absorption peak of a GNR assembly can be made to be different from its single‐photon‐absorption peak by increasing the coupling strength. Both properties are distinct from previous experimental observations. Our findings provide a useful guideline for engineering the interaction of light with complex plasmonic systems.

  相似文献   


8.
The progress on multi‐wavelength quantum cascade laser arrays in the mid‐infrared is reviewed, which are a powerful, robust and versatile source for next‐generation spectroscopy and stand‐off detection systems. Various approaches for the array elements are discussed, from conventional distributed‐feedback lasers over master‐oscillator power‐amplifier devices to tapered oscillators, and the performances of the different array types are compared. The challenges associated with reliably achieving single‐mode operation at deterministic wavelengths for each laser element in combination with a uniform distribution of high output power across the array are discussed. An overview of the range of applications benefiting from the quantum cascade laser approach is given. The distinct and crucial advantages of arrays over external cavity quantum cascade lasers as tunable single‐mode sources in the mid‐infrared are discussed. Spectroscopy and hyperspectral imaging demonstrations by quantum cascade laser arrays are reviewed.

  相似文献   


9.
Narrow‐linewidth lasers are key elements in optical metrology and spectroscopy. Spectral purity of these lasers determines accuracy of the measurements and quality of collected data. Solid state and fiber lasers are stabilized to relatively large and complex external optical cavities or narrow atomic and molecular transitions to improve their spectral purity. While this stabilization technique is rather generic, its complexity increases tremendously moving to longer wavelenghts, to the infrared (IR) range. Inherent increase of losses of optical materials at longer wavelengths hinders realization of compact, room temperature, high finesse IR cavities suitable for laser stabilization. In this paper, we report on demonstration of quantum cascade lasers stabilized to high‐Q crystalline mid‐IR microcavities. The lasers operating at room temperature in the 4.3‐4.6 μm region have a linewidth approaching 10 kHz and are promising for on‐chip mid‐IR and IR spectrometers.

  相似文献   


10.
Since the surface plasmon polariton (SPP) has received a great deal of attention because of its capability of guiding light within the subwavelength scale, finding methods for arbitrary SPP field generation has been a significant issue in the area of integrated optics. To achieve such a goal, it will be necessary to generate a plasmonic complex field. In this paper, we propose a novel method for generating a plasmonic complex field propagating with arbitrary curvatures by using double‐lined distributed nanoslits. As a unit cell, two facing nanoslits are used for tuning both the amplitude and the phase of excited SPPs as a function of their tilted angles. For verification of the proposed design rule, the authors experimentally demonstrate some plasmonic caustic curves and Airy plasmons.

  相似文献   


11.
We reveal unusually strong polarization sensitivity of electric and magnetic dipole resonances of high‐index dielectric nanoparticles placed on a metallic film. By employing dark‐field spectroscopy, we observe the polarization‐controlled transformation from high‐Q magnetic‐dipole scattering to broadband suppression of scattering associated with the electric dipole mode, and show numerically that it is accompanied by a strong enhancement of the respective fields by the nanoparticle. Our experimental data for silicon nanospheres are in an excellent agreement with both analytical calculations based on Green's function approach and the full‐wave numerical simulations. Our findings further substantiate dielectric nanoparticles as strong candidates for many applications in enhanced sensing, spectroscopy and nonlinear processes at the nanoscale.

  相似文献   


12.
A diode‐pumped Yb:YAG MOPA‐System for the unprecedented generation of transform limited pulses with variable pulse duration in the range between 10 ps and 100 ps is presented. First applications relying on unique pulse parameters as modulation free spectrum, tunability and coherence length, namely the direct laser interference patterning (DLIP) and laser cooling of stored relativistic ion beams are highlighted. Pulses are generated by a mode‐locked fs‐oscillator while the spectral bandwidth is narrowed in the subsequent regenerative amplifier by an intra‐cavity grating monochromator. Two alternative booster amplifiers were added to increase the pulse energy to 100 μJ and 10 mJ, respectively.

  相似文献   


13.
In this work, we report optomechanical coupling, resolved sidebands and phonon lasing in a solid‐core microbottle resonator fabricated on a single mode optical fiber. Mechanical modes with quality factors (Qm) as high as 1.57 × 104 and 1.45 × 104 were observed, respectively, at the mechanical frequencies and . The maximum  Hz is close to the theoretical lower bound of 6 × 1012 Hz needed to overcome thermal decoherence for resolved‐sideband cooling of mechanical motion at room temperature, suggesting microbottle resonators as a possible platform for this endeavor. In addition to optomechanical effects, scatter‐induced mode splitting and ringing phenomena, which are typical for high‐quality optical resonances, were also observed in a microbottle resonator.

  相似文献   


14.
We report complete spatial shaping (both phase and amplitude) of the second‐harmonic beam generated in a nonlinear photonic crystal. Using a collinear second‐order process in a nonlinear computer generated hologram imprinted on the crystal, the desired beam is generated on‐axis and in the near field. This enables compact and efficient one‐dimensional beam shaping in comparison to previously demonstrated off‐axis Fourier holograms. We experimentally demonstrate the second‐harmonic generation of high‐order Hermite–Gauss, top hats and arbitrary skyline‐shaped beams.

  相似文献   


15.
Optically levitated nanodiamonds with nitrogen‐vacancy centers promise a high‐quality hybrid spin‐optomechanical system. However, the trapped nanodiamond absorbs energy from laser beams and causes thermal damage in vacuum. It is proposed here to solve the problem by trapping a composite particle (a nanodiamond core coated with a less absorptive silica shell) at the center of strongly focused doughnut‐shaped laser beams. Systematical study on the trapping stability, heat absorption, and oscillation frequency concludes that the azimuthally polarized Gaussian beam and the linearly polarized Laguerre‐Gaussian beam LG03 are the optimal choices. With our proposal, particles with strong absorption coefficients can be trapped without obvious heating and, thus, the spin‐optomechanical system based on levitated nanodiamonds are made possible in high vacuum with the present experimental techniques.

  相似文献   


16.
In the development of microfluidic chips, conventional 2D processing technologies contribute to the manufacturing of basic microchannel networks. Nevertheless, in the pursuit of versatile microfluidic chips, flexible integration of multifunctional components within a tiny chip is still challenging because a chip containing micro‐channels is a non‐flat substrate. Recently, on‐chip laser processing (OCLP) technology has emerged as an appealing alternative to achieve chip functionalization through in situ fabrication of 3D microstructures. Here, the recent development of OCLP‐enabled multifunctional microfluidic chips, including several accessible photochemical/photophysical schemes, and photosensitive materials permiting OCLP, is reviewed. To demonstrate the capability of OCLP technology, a series of typical micro‐components fabricated using OCLP are introduced. The prospects and current challenges of this field are discussed.

  相似文献   


17.
The broadband enhancement of single‑photon emission from nitrogen‐vacancy centers in nanodiamonds coupled to a planar multilayer metamaterial with hyperbolic dispersion is studied experimentally. The metamaterial is fabricated as an epitaxial metal/dielectric superlattice consisting of CMOS‐compatible ceramics: titanium nitride (TiN) and aluminum scandium nitride (AlxSc1‐xN). It is demonstrated that employing the metamaterial results in significant enhancement of collected single‑photon emission and reduction of the excited‐state lifetime. Our results could have an impact on future CMOS‐compatible integrated quantum sources.

  相似文献   


18.
19.
Near‐field optical microscopy techniques provide information on the amplitude and phase of local fields in samples of interest in nanooptics. However, the information on the near field is typically obtained by converting it into propagating far fields where the signal is detected. This is the case, for instance, in polarization‐resolved scattering‐type scanning near‐field optical microscopy (s‐SNOM), where a sharp dielectric tip scatters the local near field off the antenna to the far field. Up to now, basic models have interpreted S‐ and P‐polarized maps obtained in s‐SNOM as directly proportional to the in‐plane ( or ) and out‐of‐plane () near‐field components of the antenna, respectively, at the position of the probing tip. Here, a novel model that includes the multiple‐scattering process of the probing tip and the nanoantenna is developed, with use of the reciprocity theorem of electromagnetism. This novel theoretical framework provides new insights into the interpretation of s‐SNOM near‐field maps: the model reveals that the fields detected by polarization‐resolved interferometric s‐SNOM do not correlate with a single component of the local near field, but rather with a complex combination of the different local near‐field components at each point (, and ). Furthermore, depending on the detection scheme (S‐ or P‐polarization), a different scaling of the scattered fields as a function of the local near‐field enhancement is obtained. The theoretical findings are corroborated by s‐SNOM experiments which map the near field of linear and gap plasmonic antennas. This new interpretation of nanoantenna s‐SNOM maps as a complex‐valued combination of vectorial local near fields is crucial to correctly understand scattering‐type near‐field microscopy measurements as well as to interpret the signals obtained in field‐enhanced spectroscopy.

  相似文献   


20.
A necessary condition for generation of bright soliton Kerr frequency combs in microresonators is to achieve anomalous group velocity dispersion (GVD) for the resonator modes. This condition is hard to implement in the visible as well as ultraviolet since the majority of optical materials are characterized with large normal GVD in these wavelength regions. We overcome this challenge by borrowing ideas from strongly dispersive coupled systems in solid state physics and optics. We show that photonic compound ring resonators can possess large anomalous GVD at any desirable wavelength, even if each individual resonator is characterized with normal GVD. Based on this concept, we design a mode‐locked frequency comb with thin‐film silicon nitride compound ring resonators in the vicinity of the rubidium D1 line (794.6 nm) and propose to use this optical comb as a flywheel for chip‐scale optical clocks.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号