首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 244 毫秒
1.
Density functional calculations have been performed to investigate the functionalization of single-wall carbon nanotubes (SWNTs) with the Cr(CO)3 metal fragment, employing extended molecular models. A circumcoronene molecule (C54H18), made by the fusion of 19 hexagonal carbon rings, can be regarded as a fragment of a graphene sheet. To reproduce the curvature of the SWNT surface, suitable geometric constraints have been imposed on the C54H18 model, freezing the positions of the outer hydrogens along the directions of the nanotube C-C bonds. Geometry optimizations have then been performed under this constraint on the Cr(CO)3-C54H18 complexes, pointing out the most favourable coordination sites on the hexagonal rings of the carbon atom surface and the electronic properties of the resulting system. The effect of the curvature on the metal coordination to nanotubes has been analysed by investigating the interaction of the Cr(CO)3 metal complex with the C54H18 molecules, modelling (n, 0) nanotubes with different degrees of curvature, i.e. with various values of the chiral vector (n, 0).  相似文献   

2.
By applying non-equilibrium Green's functions in combination with density-functional theory, we investigate electronic transport properties of C60 coupled to carbon nanotubes and Li electrodes. The results show that electronic transport properties of CNT-C60-CNT and Li-C60-Li systems are completely different. Nonlinear I-V characteristic, varistor-type behavior and negative differential resistance (NDR) phenomenon are observed when electrodes are carbon nanotubes. We discuss the mechanism of I-V characteristics of CNT-C60-CNT systems in details. Our results suggest conductance, energy level of Frontier molecular orbitals, energy gap between HOMO and LUMO, the coupling between molecular orbitals and electrodes are all playing critical roles in electronic transport properties.  相似文献   

3.
富勒烯C20分子器件的电子结构和传导特性   总被引:1,自引:0,他引:1       下载免费PDF全文
张鸿宇  王利光  张秀梅  郁鼎文  李勇 《物理学报》2008,57(10):6271-6276
运用基于密度泛函理论和基于非平衡格林函数的第一性原理方法研究了富勒烯C20分子及连接电极构成的C20分子器件的电子结构及电子输运性质.构建了三个基于C20分子的嵌入K和Si原子的电子输运系统,并得到了电子透射谱和分子轨道分布.分析了三种器件的电子结构和输运性质的产生原因,说明C20分子器件的电子传导主要集中在外壳.在C20分子空笼中嵌入K和Si原子后,其电子输运仍然主要集中于富勒烯C20的外壳. 关键词: 20分子')" href="#">富勒烯C20分子 电子结构 电子传导  相似文献   

4.
The Hubbard model is used as a framework for analyzing carbon nanosystems: the fullerenes C60 and C80 and open-ended carbon nanotubes with chiralities (5, 5) and (10, 10) of various lengths. In the strong-correlation limit, the model predicts that open carbon nanotubes have a lower energy per atom as compared to C60 and C80 fullerenes. This finding contradicts the conventional view that dangling bonds increase the energy of a system. However, the increase, if any, is due to the presence of five-member carbon rings in fullerenes. The energy per atom should be higher for the five-member carbon ring compared to the six-member one, because the former cannot exist in a lower energy singlet state. Carbon nanotube growth is explained. The ionization energies and electron affinities of C60 and C80 fullerenes are calculated and found to agree well with experimental data.  相似文献   

5.
Choosing closed-ended armchair (5, 5) single-wall carbon nanotubes (CCNTs) as electrodes, we investigate the electron transport properties across an all-carbon molecular junction consisting of C20 molecules suspended between two semi-infinite carbon nanotubes. It is shown that the conductances are quite sensitive to the number of C20 molecules between electrodes for both configuration CF1 and double-bonded models: the conductances of C20 dimers are markedly smaller than those of monomers. The physics is that incident electrons easily pass the C20 molecules and are predominantly scattered at the C20-C20 junctions. Moreover, we study the doping effect of such molecular junction by doping nitrogen atoms substitutionally. The bonding property of the molecular junction with configuration CF1 has been analysed by calculating the Mulliken atomic charges. Our results have revealed that the C atoms in N-doped junctions are more ionic than those in pure-carbon ones, leading to the fact that N-doped junctions have relatively large conductance.  相似文献   

6.
霍新霞  王畅  张秀梅  王利光 《物理学报》2010,59(7):4955-4960
采用基于密度泛函理论(DFT)和非平衡格林函数(NEGF)的第一性原理方法对富勒烯C32分子及在C32分子的距离最远的两个碳原子处连接Au(1,1,1)电极的分子器件进行了电子结构和电子输运性质的研究.考虑到中间分子与Au电极间距离变化的情况,通过计算得出了在不同距离下分子器件的电子传输谱和I-V特性,分析了各器件的电子结构和电子输运特性产生的原因,并分析了电极与中间分子的连接距离及门电压对分子器件电子输运的影响.得出了电极与所连接的中间分子之  相似文献   

7.
By using open-ended armchair (6, 6) single-wall carbon nanotubes as electrodes, we investigate the electron transport properties of an all-carbon molecular junction based on the C82 molecule. We find the most stable system among different isomers by performing structural optimization calculations of the Cs2 isomers and the C82 extended molecules. The calculated results show that the C82 -C2 (3) isomer and the C82 extended molecule with C82-C2 isomer are most stable. For the all-carbon hybrid system consisting of C82-C2 extended molecules, it is shown that the Landauer conductance can be tuned over several orders of magnitude both by changing the distance between two electrodes and by changing the orientation of the C82 molecule or rotating one of the tubes around the symmetry axis of the system at a fixed distance. Also, we find the most stable distance between two electrodes from the total energy curve. This fact could make this all-carbon molecular system a possible candidate for a nanoelectronic switch. Moreover, we interpret the conductance mechanism for such a molecular device.  相似文献   

8.
应用第一性原理计算,研究了椭圆形的C70分子在碳纳米管中的可能取向.采用(14,7)单壁纳米管为原型材料,发现纳米管和C70分子的弱化学相互作用是决定分子取向的决定因素.通过模拟扫描隧道显微镜图像和计算光学性质,发现封装的椭圆体C70分子的局域电子结构敏感地依赖于分子取向  相似文献   

9.
Using spin-polarised density functional theory calculation single-walled carbon nanotube (SWCNT) whose sidewall is functionalised with nickel cluster is studied for its possible application in CO molecule sensing. We have chosen (6,0) SWCNT functionalised with Ni13 cluster as the model for nanotube-cluster system. Changes in the properties of nanotube-cluster system brought by the CO molecule are reported. The CO molecule binding is energetically more favourable to the nanotube-cluster system than the pristine nanotube. The electronic properties are investigated in terms of density of states and bandstructure calculations. Pristine carbon nanotubes are intrinsically non-magnetic but nanotubes functionalised with nickel cluster are observed to have a huge magnetic moment which reduced on adsorbing CO molecule. The change in magnetisation upon CO adsorption may be detected using a suitable magnetometer. This result suggests the possibility of using carbon nanotube-cluster system to detect CO molecules. Bader charge analysis shows that CO molecule withdraws electronic charge from the cluster atoms. Nature of chemical bonding is studied with crystal orbital Hamilton population (–COHP) analysis.  相似文献   

10.
C60 molecules encapsulated in carbon nanotubes interact by van der Waals forces with the tube walls. The nanotube field leads to orientational confinement of the C60 molecules which depends on the nanotube radius. In small tubes with radius RT≤7 ? a fivefold symmetry axis of the molecule coincides with the tube axis, the center of mass of the molecule being located on the tube axis. The interaction between C60 molecules encapsulated in the nanotube is then described by a O2-rotor model on a one-dimensional (1-d) liquid chain with coupling between orientational and displacive degrees of freedom but no long-range order. This coupling leads to a temperature-dependent chain contraction. The structure factor of the 1-d liquid is derived. In tubes with larger radius the molecular centers of mass are displaced off the tube axis. The distinction of two groups of peapods with on- and off-axis molecules suggests an explanation of the apparent splitting of Ag modes of C60 in nanotubes measured by resonant Raman scattering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号