首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Wetting behavior of solid surfaces is a key concern in our daily life as well as in engineering and science. In the present study, we demonstrate a simple dip coating method for the preparation of Thermally stable, transparent superhydrophobic silica films on glass substrates at room temperature by sol-gel process. The coating alcosol was prepared by keeping the molar ratio of methyltriethoxysilane (MTES), trimethylmethoxysilane (TMMS), methanol (MeOH), water (H2O) constant at 1:0.09:12.71:3.58, respectively with 13 M NH4OH throughout the experiments and the films were prepared with different deposition time varied from 5 to 25 h. In order to improve the hydrophobicity of as deposited silica films, the films were derivatized with 10% trimethylchlorosilane (TMCS) as a silylating agent in hexane solvent for 24 h. Enhancement in wetting behavior was observed for surface derivatized silica films which showed a maximum static water contact angle (172°) and minimum sliding angle (2°) for 25 h of deposition time. The superhydrophobic silica films retained their superhydrophobicity up to a temperature of 550 °C. The silica films were characterized by field emission scanning electron microscopy (FE-SEM), surface profilometer, Fourier transform infrared (FT-IR) spectroscopy, thermo-gravimetric and differential thermal analysis (TG-DTA), percentage of optical transmission, water contact angle measurements. The imperviousness behavior of the films was tested with various acids.  相似文献   

2.
In this study, hot embossing by reusable Ni mold with features in the form of rectangular diffraction gratings of 4 μm period was successfully employed for surface texturing of polytetrafluoroethylene (PTFE) film above the glass transition temperature of PTFE amorphous phase with the aim to enhance surface hydrophobicity. Imprint pressure was set to 0.5 MPa and it was at least tenfold lower than reported by other authors using cold stamping. Embossed gratings were clearly seen on the surface of all imprinted samples even after the annealing at 140 °C and aging for 1 month at room temperature. The best results were achieved when imprint temperature was 150 °C. Measurements of the water contact angle on imprinted PTFE surfaces have showed that increase of the average contact angle for the current test setup was 8°. Using imprint stamp with the more favorable features may lead to somewhat higher hydrophobicity.  相似文献   

3.
Non-wettable surfaces with high contact angles and facile sliding angle of water droplets have received tremendous attention in recent years. The present paper describes the room temperature (∼27 °C) synthesis of dip coated water repellent silica coatings on glass substrates using iso-butyltrimethoxysilane (iso-BTMS) as a co-precursor. Emphasis is given to the influence of the hydrophobic reagent (iso-BTMS) on the water repellent properties of the silica films. Silica sol was prepared by keeping the molar ratio of tetraethoxysilane (TEOS) precursor, methanol (MeOH) solvent, water (H2O) constant at 1:16.53:8.26 respectively, with 0.01 M NH4F throughout the experiment and the molar ratio of iso-BTMS/TEOS (M) was varied from 0 to 0.965. The effect of M on the surface structure and hydrophobicity has been researched. The static water contact angle values of the silica films increased from 65° to 140° and water sliding angle values decreased from 42° to 16° with an increase in the M value from 0 to 0.965. The water repellent silica films are thermally stable up to a temperature of 280 °C and above this temperature the film shows hydrophilic behavior. The water repellent silica films were characterized by the Fourier Transform Infrared (FT-IR) Spectroscopy, Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), % of optical transmission, thermal and chemical aging tests, humidity tests, static and dynamic water contact angle measurements.  相似文献   

4.
Wetting phenomena of water droplets on solid are of crucial concern in our daily life as well as in engineering and science. The present paper describes the room temperature synthesis of superhydrophobic silica films on glass substrates using trimethylethoxysilane (TMES) as a co-precursor. The coating sol was prepared by keeping the molar ratio of tetraethoxysilane (TEOS) precursor, methanol (MeOH) solvent, water (H2O) constant at 1:38.6:8.68, respectively, with 2 M NH4OH throughout the experiments and the TMES/TEOS molar ratio (M) was varied from 0 to 1.1. It was found that with an increase in M value, the hydrophobicity of the films increased, however the optical transmission decreased from 88% to 82% in the visible range. The hydrophobic silica films retained their hydrophobicity up to a temperature of 275 °C and above this temperature the films became superhydrophilic. The hydrophobic silica films were characterized by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Fourier Transform Infrared (FT-IR) spectroscopy, percentage of optical transmission, humidity test and static and dynamic contact angle measurements.  相似文献   

5.
The present paper describes the room temperature synthesis of dip coated water repellent silica coatings on glass substrates using trimethylethoxysilane (TMES) as a co-precursor. Silica sol was prepared by keeping the molar ratio of tetramethoxysilane (TMOS) precursor, methanol (MeOH) solvent, water (H2O) constant at 1:29.27:2.09 respectively, with 0.5 M NH4OH throughout the experiments and the TMES/TMOS molar ratio (M) was varied from 0 to 3.8. It was found that with an increase in M value, the roughness and hydrophobicity of the films increased, however the optical transmission decreased from 93% to 57% in the visible range. The hydrophobic silica films retained their hydrophobicity up to a temperature of 250 °C and above this temperature the films became hydrophilic. The hydrophobic silica thin films were characterized by taking into consideration the surface roughness studies, Fourier transform infrared (FT-IR) spectroscopy, percentage of optical transmission, scanning electron microscopy (SEM) and contact angle measurements.  相似文献   

6.
Control on the wettability of solid materials by liquid is a classical and key issue in surface engineering. Optically transparent water-repellent silica films have been spin-deposited on glass substrates at room temperature (∼27 °C). The wetting behavior of silica films was controlled by surface silylation method using dimethylchlorosilane (DMCS) as a silylating reagent. A coating sol was prepared by keeping the molar ratio of methyltrimethoxysilane (MTMS) precursor, methanol (MeOH) solvent, water (H2O) constant at 1:8.8:2.64 respectively, with 4 M NH4OH as a catalyst throughout the experiments and the amount of DMCS in hexane was varied from 0 to 12 vol.%. It was found that with an increase in vol.% of DMCS, the water contact angle values of the films increased from 78° to 136°. At 12 vol.% of DMCS, the film shows static water contact angle as high as 136° and water sliding angle as low as 18°. The hydrophobic silica films retained their water repellency up to a temperature 295 °C and above this temperature the films show superhydrophilic behavior. These results are compared with our earlier research work done on silylation of silica surface using hexamethyldisilazane (HMDZ) and trimethylchlorosilane (TMCS). The hydrophobic silica films were characterized by taking into consideration the Fourier transform infrared (FT-IR) spectroscopy, thermo gravimetric-differential thermal (TG-DT) analyses, scanning electron microscopy (SEM), atomic force microscopy (AFM), % of optical transmission, thermal and chemical aging tests, humidity tests, static and dynamic water contact angle measurements.  相似文献   

7.
ZSM-5 zeolites were modified with alkyltrichlorosilanes of various chain lengths (octyltrichlorosilane, decyltrichlorosilane, dodecyltrichlorosilane and hexadecyltrichlorosilane) and characterized by Fourier transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), Thermal gravimetric analysis (TGA) and contact angle measurements (CA). The results showed that a closely packed and hydrophobic layer was presented at the particles surface and the surface wetting property varied from hydrophilic to hydrophobic, even to superhydrophobic. It was interesting to notice that the hydrophobic properties of modified ZSM-5 particles could be tuned by varying the chain length of chlorosilane and changing the pretreatment temperature before silanization. With increasing the alkyl chain length of trichlorosilane, the hydrophobicity increased. However, with an increase in the pretreatment temperature, the hydrophobicity decreased. Moreover, the relationship between the wetting properties and thermal stability was also investigated, the results showed that the modified ZSM-5 particles possessed good hydrophobicity at a temperature below 250 °C in air. These modified ZSM-5 particles may be utilized for many potential applications, such as membrane fillers, selective adsorbents, catalysts, chromatographic supports and so on.  相似文献   

8.
徐威  兰忠  彭本利  温荣福  马学虎 《物理学报》2015,64(21):216801-216801
微小液滴在不同能量表面上的润湿状态对于准确预测非均相核化速率和揭示界面效应影响液滴增长微观机理具有重要意义. 通过分子动力学模拟, 研究了纳米级液滴在不同能量表面上的铺展过程和润湿形态. 结果表明, 固液界面自由能随固液作用强度增加而增加, 并呈现不同液滴铺展速率和润湿特性. 固液作用强度小于1.6的低能表面呈现疏水特征, 继续增强固液作用强度时表面变为亲水, 而固液作用强度大于3.5的高能表面上液体呈完全润湿特征. 受微尺度条件下非连续、非对称作用力影响, 微液滴气液界面存在明显波动, 呈现与宏观液滴不同的界面特征. 统计意义下, 微小液滴在不同能量表面上铺展后仍可以形成特定接触角, 该接触角随固液作用强度增加而线性减小, 模拟结果与经典润湿理论计算获得的结果呈现相似变化趋势. 模拟结果从分子尺度为核化理论中的毛细假设提供了理论支持, 揭示了液滴气液界面和接触角的波动现象, 为核化速率理论预测结果和实验测定结果之间的差异提供了定性解释.  相似文献   

9.
Nanocrystalline Cu film with a mirror surface finishing is prepared by the electric brush-plating technique. The as- prepared Cu film exhibits a superhydrophilic behavior with an apparent water contact angle smaller than 10°. A subsequent increase in the water contact angle and a final wetting transition from inherent hydrophilicity with water contact angle smaller than 90° to apparent hydrophobicity with water contact angle larger than 90° are observed when the Cu film is subjected to natural aging. Analysis based on the measurement of hardness with nanoindentation and the theory of the bond-order-length-strength correlation reveals that this wetting variation on the Cu film is attributed to the relaxation of residual stress generated during brush-plating deposition and a surface hydrophobization role associated with the broken bond polarization induced by surface nanostructure.  相似文献   

10.
A superhydrophobic surface originated from quincunx-shape composite particles was obtained by utilizing the encapsulation and graft of silica particles to control the surface chemistry and morphology of the hybrid film. The composite particles make the surface of film form a composite interface with irregular binary structure to trap air between the substrate surface and the liquid droplets which plays an essential role in obtaining high water contact angle and low water contact angle hysteresis. The water contact angle on the hybrid film is determined to be 154 ± 2° and the contact angle hysteresis is less than 5°. This is expected to be a simple and practical method for preparing self-cleaning hydrophobic surfaces on large area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号