首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J. H. Kang  S. J. Lee 《显形杂志》2009,12(4):375-382
The ventilation flow in a heating, ventilation and air conditioning (HVAC) module of a passenger car was investigated experimentally. Three different ventilation modes with varying temperature mode were tested to study the effect of ventilation mode on the velocity field inside the HVAC module. For each mode, more than 450 instantaneous velocity fields were measured using a particle image velocimetry (PIV) velocity field measurement technique. The instantaneous velocity fields were ensemble averaged to obtain the spatial distribution of mean velocity and spanwise vorticity. The present work highlights the usefulness of the PIV technique for the analysis of the flow inside an HVAC module. The experimental results can be used not only to understand and improve the ventilation flow of an HVAC module but also to validate numerical predictions.  相似文献   

2.
路中磊  魏英杰  王聪  孙钊 《物理学报》2016,65(1):14704-014704
基于高速摄像方法,针对入水空泡流动特征和机理,进行了开放腔体圆柱壳垂直入水实验研究.通过对实验现象的观测,发现开放腔体圆柱壳入水运动会形成波动流动和云化流动两种流动方式,结合影像数据,分别描述了两种流动状态下的空泡形态特征,并获得了空泡波动参数的变化规律;对比不同入水速度实验,分析了入水速度对入水空泡流动方式和流动参数的影响;依据流体力学基本理论,分析了入水空泡波动和云化现象的形成机理.结果表明:随入水速度增加,入水空泡依次呈现波动和云化两种流动状态,波动频率与入水速度无关,闭合发生时间随入水速度增加而减小,与Froude数呈线性关系;入水导致开放空腔内部气体涨缩,引起开放端压力场和速度场周期性扰动,空泡截面扩展程度出现差异,形成空泡波动现象;空泡闭合后尾部形成回射流,回射流触及空泡壁面引起壁面流动转捩,形成空泡云化现象.  相似文献   

3.
绕水翼片状空化流动结构的数值与实验研究   总被引:3,自引:0,他引:3  
采用数值与实验相结合的方法研究了水翼片状空化流动结构.实验采用高速录像技术观察了片状卒泡形态,应用LDV测量了翼型周围的湍动能和速度分布;采用N-S方程和基于空泡动力学方程的空化模型计算了绕水翼片状空化流场.结果表明:在片状空化阶段,翼型吸力面上附着很薄的一层透明空泡,空泡彤态呈现于指状;随着空化数的减少,空泡尾部水汽交界面相互作用增强,并且空泡尾部出现大的旋涡,影响了空泡尾部区域压力和速度分布,片状空泡尾部的水汽混合区出现不稳定现象,同时存在小的空泡团脱落.数值模拟得到的水翼片状空化流动现象和实验观察到的结果基本一致,验证了计算模型和数值方法的可靠性.  相似文献   

4.
In many industrial processes, such as pouring a liquid or coating a rotating cylinder, air bubbles are entrapped inside the liquid. We propose that this is due to air being drawn into the narrow channel of a cusp singularity that generically forms on free surfaces. Since the width of the cusp is exponentially small in the driving strength, even the minute viscosity of air is enough to destroy the stationary solution, and a sheet emanates from the cusp's tip, through which air is entrained. Our analytical theory is confirmed by quantitative comparison with numerical simulations of the flow equations, and is found to be in qualitative agreement with experimental observation.  相似文献   

5.
《中国物理 B》2021,30(7):74701-074701
Near space has been paid more and more attentionin recent years due to its military application value.However,flow characteristics of some fundamental configurations(e.g.,the cavity) in near space have rarely been investigated due to rarefied gas effects,which make the numerical simulation methods based on continuous flow hypothesis lose validity.In this work,the direct simulation Monte Carlo(DSMC),one of the most successful particle simulation methods in treating rarefied gas dynamics,is employed to explore flow characteristics of a hypersonic cavity with sweepback angle in near space by considering a variety of cases,such as the cavity at a wide range of altitudes 20-60 km,the cavity at freestream Mach numbers of 6-20,and the cavity with a sweepback angle of 30°-90°.By analyzing the simulation results,flow characteristics are obtained and meanwhile some interesting phenomena are also found.The primary recirculation region,which occupies the most area of the cavity,causes pressure and temperature stratification due to rotational motion of fluid inside it,whereas the pressure and temperature in the secondary recirculation region,which is a small vortex and locates at the lower left corner of the cavity,change slightly due to low-speed movement of fluid inside it.With the increase of altitude,both the primary and secondary recirculation regions contract greatly and it causes them to separate.A notable finding is that rotation direction of the secondary recirculation region would be reversed at a higher altitude.The overall effect of increasing the Mach number is that the velocity,pressure,and temperature within the cavity increase uniformly.The maximum pressure nearby the trailing edge of the cavity decreases rapidly as the sweepback angle increases,whereas the influence of sweepback angle on velocity distribution and maximum temperature within the cavity is slight.  相似文献   

6.
 针对空间碎片超高速撞击充气压力容器问题,应用非线性动力学分析软件AUTODYN-2D,采用SPH方法对碎片云在高压气体中的运动特性进行了数值模拟研究。在建模过程中,分析比较了材料状态方程对数值模拟结果的影响,并通过与实验结果的比较,选取了适合该问题的状态方程,验证了数值模拟方法的有效性。结果表明:由于容器内压气体的存在,碎片云运动发生减速,并且碎片云的轴向扩展速度相对于碎片云的径向扩展速度减速较慢;高速撞击产生的碎片云与容器内的高压气体发生了强烈的相互作用,碎片云尖端产生的钉状物及高压气体中产生的冲击波是控制容器在撞击后发生进一步破坏的两个重要因素。  相似文献   

7.
Spontaneous formation of a cylindrical density cavity, or "plasma hole," has been observed in a rotating magnetized plasma. Density of the plasma hole is one-tenth of that of ambient plasma and is bounded by a steep transition layer of the order of several ion Larmor radii. The flow velocity field associated with the plasma hole is experimentally determined, exhibiting a monopole vortical structure. It is found that the vorticity distribution is localized near the center of the hole and is identified as a Burgers vortex. This is the first experimental observation of a Burgers vortex in a plasma.  相似文献   

8.
Theoretical quantitative considerations as well as experimental data are presented based on absorption population depletion coupled with cavity ringdown spectroscopy. The absorbing number densities inside the cavity are determined by numerical integration of the coupled rate equations. The number of photons involved in absorption, cavity losses due to mirror reflectivity and stimulated emission are taken into account. The principle is to monitor a first transition by cavity ringdown spectroscopy while a second transition, with a state in common, is resonantly excited by the decaying radiation of different frequency also trapped inside the optical cavity. A numerical example is given for atomic lines of neon and the measurements carried out in a supersonic slit-jet expansion discharge demonstrate the feasibility of the technique. The technique is also proven to work with two resonant transitions of C2. Translational velocity of the jet modifying the rate equations is included in the model.  相似文献   

9.
A radiation-driven ablation model was developed for the MHD code MACH2 to provide a numerical simulation for cableguns. Ablation from the insulator surface is driven by radiation from an optically thin gray gas in the computational domain adjacent to the insulator surface. Two parameters required for the model-specific opacity and vapor layer transmissivity-were determined from baseline experiments. Using these parameter values, numerical simulations for five additional cablegun configurations were compared with experimental measurements obtained using a two-beam laser interferometer. Equations of state models for copper-Teflon and polyethylene plasmas were calculated for use in these simulations. Comparisons were made for radial profiles of electron density, plume velocity, and plume width. Based on the results obtained in this study, it appears that MACH2 simulations can be used to provide reasonable estimates of cablegun plume properties that are difficult or impossible to obtain experimentally, such as the spatial flow details inside the cavity or the temporal distribution of mass loss.  相似文献   

10.
In this paper, the feasibility of measuring the gas volume fraction in a mixed gas-liquid flow by using an acoustic resonant spectroscopy (ARS) method in a transient way is studied theoretically and experimentally. Firstly, the effects of sizes and locations of a single air bubble in a cylindrical cavity with two open ends on resonant frequencies are investigated numerically. Then, a transient measurement system for ARS is established, and the trends of the resonant frequencies (RFs) and resonant amplitudes (RAs) in the cylindrical cavity with gas flux inside are investigated experimentally. The measurement results by the proposed transient method are compared with those by steady-state ones and numerical ones. The numerical results show that the RFs of the cavity are highly sensitive to the volume of the single air bubble. A tiny bubble volume perturbation may cause a prominent RF shift even though the volume of the air bubble is smaller than 0.1% of that of the cavity. When the small air bubble moves, the RF shift will change and reach its maximum value as it is located at the middle of the cavity. As the gas volume fraction of the two-phase flow is low, both the RFs and RAs from the measurement results decrease dramatically with the increasing gas volume, and this decreasing trend gradually becomes even as the gas volume fraction increases further. These experimental results agree with the theoretical ones qualitatively. In addition, the transient method for ARS is more suitable for measuring the gas volume fraction with randomness and instantaneity than the steady-state one, because the latter could not reflect the random and instant characteristics of the mixed fluid due to the time consumption for frequency sweeping. This study will play a very important role in the quantitative measurement of the gas volume fraction of multiphase flows.  相似文献   

11.
To measure the parameters of fiber and to visualize the reshaping process of fiber in air tunnel, an experimental approach is developed in the present work. The tunnel is designed with gradient flow velocity, and the fiber reshaping images as well as the fiber length value are obtained experimentally. An analytical expression of velocity distribution in the tunnel is theoretically derived and the simulated results are obtained. Automatic fiber reshaping including stretch and rotation is verified using the dynamical equation and the multi-spherical chain model. It is shown that pull force by air flow makes a chain of balls become straight and Stokes moment makes the ball chain rotate. Finally, reshaping criterion related with flow velocity is formulated.  相似文献   

12.
基于界面跟踪方法的汽蚀模型和算法的有效性验证   总被引:1,自引:1,他引:0  
针对两相附着汽蚀流动机理,基于界面跟踪方法发展了新的汽蚀模型和算法。所发展的汽蚀模型和算法不仅考虑了液相/气相界面处的压力差,而且考虑了耦合Reynolds-Averaged Navier-Stokes方程求解技术得到的流场压力梯度信息来迭代计算附着汽蚀形状。采用具有试验数据的半球形头部圆柱体汽蚀绕流作为算例来验证所提出的汽蚀模型和算法的有效性。采用不同的网格数和松弛因子数值验证了发展的汽蚀模型和算法的有效性。三种汽蚀数下的数值计算结果得到的压力系数分布与试验数据完全吻合。结果表明所提出的汽蚀模型和算法能够准确模拟出汽蚀发生点和汽蚀长度。  相似文献   

13.
膜蒸馏装置热容腔流场数值模拟的可行性分析   总被引:2,自引:0,他引:2  
本文运用CFD软件,采用水作为工质,在第Ⅲ代膜组件基础上,对旋转切向入流空气隙膜蒸馏热容腔内的流场进行了模拟计算,通过数值模拟结果与实验数据的比较分析,验证了针对膜组件热容腔进行理论模拟所设置的物理模型和边界条件是符合实际的,理论模拟值和实验值的误差在20%范围内,其结果较为理想.  相似文献   

14.
超高速撞击中影响碎片云形状因素分析   总被引:1,自引:0,他引:1  
 应用光滑粒子流体动力学(SPH)方法对铝球弹丸正撞击防护屏进行了数值模拟研究,将计算结果同相应的实验结果进行了比较,二者符合得很好。在此基础上分析了撞击速度、防护屏厚度、铝球直径、材料、弹丸形状、间隙量等因素对碎片云的影响规律。并以碎片云的长度和径向尺寸为指标,应用正交设计方法对撞击速度、防护屏厚度、铝球直径三因素对指标的影响主次关系进行了分析研究,防护屏厚度是碎片云长度的主要影响因素,而弹丸直径是碎片云径向的主要影响因素。  相似文献   

15.
In the present work, reacting flow characteristics of a 2D trapped vortex combustor (TVC) have been investigated numerically. Turbulent flow prevailing in the combustor is modelled using the two equation shear stress transport (SST) k-ω model and the turbulence–chemistry interactions are modelled using the eddy dissipation concept (EDC) model. Validation study reveals that the data generated by numerical model for reacting flow cases matches reasonably well with the experimental data. Simulation results indicate that for a particular operating condition, the flow structure within the cavity for reacting flow cases is significantly different from non-reacting flow cases. Besides this, under reacting flow condition, the vortex core location shifts with variation in operating condition. This study also reveals significant differences in the velocity gradient at the shear layer between reacting and non-reacting flow conditions. Furthermore, the turbulent kinetic energy at the cavity zone increases for the reacting flow condition, which is attributed to the volume expansion associated with the combustion processes. Also, temperature contours at locations downstream of the trailing edge indicate that both cavity flames are merged together for higher primary air velocity cases, and this is essential for efficient performance of TVC.  相似文献   

16.
The results of photon Doppler velocimetry of ejecta from shock-loaded metal samples are reported. The experiments have been performed with tin and lead samples of a given thickness and a given surface roughness. The direct numerical simulation of the process of mass ejection from the surface of shock-loaded samples is performed for conditions close to experimental by the smoothed particle hydrodynamics method. The areal density and initial velocity distribution of the volume density of ejecta are determined. Using these results, we calculate the time dependence of the profile of the volume density at the expansion of the formed dust cloud to air. Applying an approach based on the transport equation for the correlation function of the scattered field, the main parameters of the velocity distribution of ejecta, areal density of ejecta, etc. are reconstructed from spectral photon Doppler velocimetry data. The experimentally observed temporal dynamics of spectra, which is caused by the drag of dust in air, is described at an appropriately chosen size dispersion of dust particles. The masses of ejecta reconstructed from experimental data are in agreement with the smoothed particle hydrodynamics results.  相似文献   

17.
水平管内栓塞流气力输送的动理学模拟   总被引:3,自引:0,他引:3  
波状栓塞流是气力输送中的一种典型流型。为了发展更为准确和细致的栓塞流数学模型,本文引入动理学理论建立气-固两相波状栓塞流动的数学模型,对管道内的波状栓塞流动进行了三维数值研究,再现了流动过程中栓塞和堆积层的形成、运动过程,得到了压力降、空气速度、栓塞长度和堆积层厚度等重要的流动参数;栓塞长度、堆积层体厚度随空气表观速度的变化等一些细微流动特征得到了体现,表明动理学理论能够反映出栓塞流这种非连续高浓度气-固流动的物理本质,具有很好的适用性。本文的研究为栓塞流数值模型的发展引入了一种新的数学工具和思路。  相似文献   

18.
基于光纤光栅的高灵敏度流速传感器   总被引:7,自引:0,他引:7  
利用光纤光栅压强传感机构和汾丘里管设计了一种基于光纤光栅的流速传感器,并推导了光纤光栅中心波长漂移量与流速的关系式。实验表明,该传感器具有较高的灵敏度,稳定性较好,光纤光栅的中心波长随流速的增加而不断向短波方向漂移,而带宽几乎没有变化,实验和理论符合得较好。该流速传感器的动态感测范围为51.0~148.2 mm/s,在该范围内,至少可感测到0.3 mm/s的流速变化,这是目前所报道的最优值。优化光纤光栅压强传感机构及汾丘里管的参量,可测量其它速度段的流速,并可进一步提高传感灵敏度。  相似文献   

19.
Mathematical and numerical modeling of fluid flows in the domains with free boundaries under co-current gas flow is widely investigated nowadays. A stationary problem of fluid motion in a rectangular cavity with a non-deformed free boundary is studied in a two-dimensional statement. The tangential stresses created on the free boundary by an adjoint gas flow are considered to be a driving force for a fluid motion. The influence of the cavity geometry (cavity aspect ratio) and of the free boundary (length of the open part of the boundary) on the velocity field is investigated numerically. The simulations are carried out for different values of the gas Reynolds numbers. The characteristic values for the flow parameters as well as geometrical characteristics described in this paper are motivated by the main features of the CIMEX-1 experiments prepared for the International Space Station. The paper presents examples of the fluid flow structure in the open cavities and conclusions.  相似文献   

20.
龚博致  张秉坚 《物理学报》2009,58(3):1504-1509
应用非平衡分子动力学方法,对水中超空泡流形成机理及减阻效应进行了模拟研究.计算得到了流体密度分布、局部空化数分布、阻力系数及含气百分比等流场细节数据,结果显示空化数判据在分子层面仍然成立,局部低空化数区域与超空泡形成区域在空间上分离;超空泡形成和稳定主要受物体运动速度影响;空化器构型对空泡内含气率有较大影响;从云雾空化状态过渡到超空泡,物体表面摩擦力可以减小50%—90%.与数值模拟结果的对比表明非平衡分子动力学模拟适用于研究微观超空泡机理,能够经济有效地探讨超高速流体运动的一些自然规律. 关键词: 非平衡分子动力学 超空泡 高速流体 摩擦系数  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号