首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High pesticide residues in fresh produce is a serious food safety issue. This study was aimed at assessing the pesticides residues in some important vegetables and fruits marketed in Faisalabad, Pakistan and the impact of sonolytic ozonation (O3/US) treatment in removing these contaminants. From a short grower’s survey, five registered and mostly used pesticides (acetamiprid, carbendazim, imidacloprid, thiacloprid and thiamethoxam) were identified. A time optimization trial of O3/US application (05, 10 and 15 min) on okra, showed that 10 min treatment significantly reduced three identified chemicals (thiamethoxam 100 %, imidacloprid and thiacloprid 97.17 %), without any adverse effect on its quality. In follow up trial, five fresh vegetables (cauliflower, chillies, cucumber, spinach and tomato) three fresh fruits (grapes, guava and peach) collected from three markets of Faisalabad, were pooled together to have uniform samples. Vegetables and fruits were treated with O3/US for 10 and 6 min, respectively, along with control (simple tap wash) for determining the impacts on pesticides degradation. Samples were processed for extraction, clean up and analysis using HPLC-UV–Vis in isocratic mode. The data revealed the presence of five mentioned chemicals, with an accumulative mean residue of 9.006 and 1.921 µg/g in tested vegetables and fruits, respectively. After subjecting to O3/US, the accumulative chemical residues were reduced to 3.214 µg/g (64.313 %) and 1.064 (44.6 %) in treated vegetables and fruits respectively. Irrespective of fresh produce, the mean residues of thiamethoxam, imidachloprid, acetamiprid and thiachloprid and carbendazim were reduced by 99.3 %, 52.6 %, 65.2 %, 87.3 % and 72% respectively. It was concluded that sonolytic ozonation treatment was effective in significant reduction of pesticide residues from vegetables and fruits and thus can be employed as a good food safety practice at culinary level to reduce the associated health hazardous risks.  相似文献   

2.
Surface‐enhanced Raman scattering (SERS) spectra are presented and analyzed for two important organophosphate pesticides, dimethoate (DMT) and omethoate (OMT). Very detailed SERS spectra were obtained by aggregated Ag hydrosols, both in aqueous suspension and dried on a glass substrate. The SERS and ordinary Raman spectra of DMT do not resemble each other, suggesting that a chemical reaction immediately occurs when DMT is adsorbed onto the metal surface. We propose that the reaction product is OMT, which is the oxygen analog of DMT, on the basis of the Raman and SERS spectra of OMT. Further support is derived from the calculated Raman spectra of DMT and OMT. Minor wavenumber and intensity differences that are observed between the SERS spectra of DMT reaction product and those of OMT could be related to different metal/adsorbate interaction modes. The results can be useful in the development of new analytical methods for the determination of pesticide residues in food. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Production of the distilled alcohol pisco results in vinasse, dark brown wastewater with high polyphenols contents and chemical oxygen demand (COD). No prior research exists on the efficiency of advanced oxidations processes (AOPs) in treating pisco vinasse. Therefore, the purpose of this study was to assess the efficiency of ultraviolet (UV), ultrasound (US), US + UV, heterogeneous photocatalysis (HP), and HP + US treatments. Polyphenols, COD, and color removal, as well as oxidation-reduction potential, were monitored over a 60-minute treatment period. Energy consumption levels and synergies were also calculated. The HP + US treatment achieved the best removal ratios for polyphenols (68%), COD (70%), and color (48%). While the HP treatment was the second most efficient in terms of polyphenols (62%), COD (58%), and color (40%) removal, this AOP comparatively required the least amount of energy. Considering the energy efficiency and relatively high pollutant-removal rates of the HP treatment, this AOP is recommended as a practical alternative for treating pisco vinasse.  相似文献   

4.
An investigation was conducted into the utilization of treatments combining ultrasound and lysozyme (US + Lys) to deactivate Salmonella typhimurium (S. typhimurium) in the liquid whole egg (LWE). Furthermore, US + Lys and heat treatment (HT) with a similar microbial inactivation effect were comparatively evaluated by examining their impact on the quality attributes of LWE. The LWE was treated with US at 35–45 °C and 605–968 W/cm2 for 5–35 min, and with HT at 58–64 °C for 3–4 min. Lysozyme (Lys) alone achieved a minimal degree of inactivation in S. typhimurium, while it was enhanced with the application of US alone when the treatment temperature, time, and energy were increased. Furthermore, US and US + Lys caused a reduction of 3.31 and 4.26 log10 cycles in S. typhimurium, respectively at 968 W/cm2 and 35 °C for 20 min, indicating a synergistic relationship between US and Lys for the effective inactivation of S. typhimurium. Similarly, HT and HT + Lys achieved a reduction of 4.10 and 4.75 log10 cycles at 64 °C/3 min, respectively. The L* and b* values of the LWE following US and US + Lys application were significantly higher than untreated and heat-treated LWE, indicating that US treated LWE had a brighter and yellower appearance. The protein solubility (PS) slightly decreased after all treatments, while the pH increased. Furthermore, the foaming capacity (FC) and foam stability (FS) were decreased, revealing that LWE had a lower FC and unstable foam after all treatments. Therefore, US and US + Lys could increase the viscosity and gelation temperature (Tg) of LWE, indicating that LWE exhibited higher heat resistance after US treatment. These results indicated that US + Lys might be a promising pasteurization technology in the processing of LWE.  相似文献   

5.
Many kinds of vegetables were contaminated by a huge amount of radioactivity, such as 131I or 137Cs, derived from the Fukushima nuclear accident. The concentration of radioactivity in contaminated vegetables was higher than the value of the legal limit for shipment, therefore, we attempted to identify a simple and effective removal method for contaminated farm products to ensure the relief of farmers and the security of consumers. First, the radioactivity distribution and adhesion state of contaminated vegetables were investigated by an imaging plate (IP) image. As a result, there were two types of contamination, spot type or spread type, of vegetables. The removal of radioactivity by physical or chemical methods was investigated. As a result, radioactivity removal by water washing showed no significant difference between boiling water and cold water. There was no significant difference between hand washing and running water washing. The result of chemical removal showed that reducing agents removed radioactivity from vegetables by 70–80% for 131I and more than 80% for 137Cs. In particular, ascorbic acid is promising as a safe and versatile option.  相似文献   

6.
In this work, the cause of abnormal color in ammonium sulfate products formed by flue gas desulfurization is revealed by investigating the conversion relationship between different sulfur-containing ions and their behavior in a sulfuric acid medium. Both thiosulfate (S2O32−) and sulfite (SO32− & HSO3) impurities affect the quality of ammonium sulfate. The S2O32− is the main reason for the yellowing of the product due to the formation of sulfur impurities in concentrated sulfuric acid. To address the yellowing of ammonium sulfate products, a unified technology (US/O3), using ozone (O3) and ultrasonic waves (US) simultaneously, is exploited to remove both thiosulfate and sulfite impurities from the mother liquor. The effect of different reaction parameters on the degree of removal of thiosulfate and sulfite is investigated. The synergistic effect of ultrasound and ozone on ion oxidation is further explored and demonstrated by the comparative experiments with O3 and US/O3. Under the optimized conditions, the thiosulfate and sulfite concentration in the solution is 2.07 and 5.93 g/L, respectively, and the degree of removal is 91.39 and 90.83%, respectively. The product obtained after evaporation and crystallization is pure white and meets the national standard requirements for ammonium sulfate products. Under the same conditions, the US/O3 process has apparent advantages, such as saving reaction time compared with the O3 process alone. Introducing an ultrasonically intensified field improves the generation of oxidation radicals ·OH, 1O2, and ·O2 in the solution. Furthermore, the effectiveness of different oxidation components in the decolorization process is studied by adding other radical shielding agents using the US/O3 process supplemented with EPR analysis. The order of the different oxidation components is O3(86.04%) > 1O2(6.53%) > •OH(4.45%) > •O2(2.97%) for the oxidation of thiosulfate, and it is O3(86.28%) > •OH(7.49%) > 1O2(4.99%) > •O2(1.25%) for the oxidation of sulfite.  相似文献   

7.
Trace concentration of pesticides such as Atrazine and Methyl parathion in water solutions has harmful health effects. In this work a methodology to detect trace concentrations for both pesticides has been developed. The pesticide solution contained into a quartz cell is irradiated by a pulsed laser at λ = 230 nm, this energy is absorbed depending on the pesticide concentration; the non absorbed light that sample allows to pass is absorbed by the NaCl:Mn2+ doped single crystal fixed to a piezoelectric sensor of 5 MHz to obtain the photo- acoustic (PA) signal. The results showed that is possible to detect concentrations around tenths of ng/l.  相似文献   

8.
This study investigated systematically the removal of carbamazepine (CBZ) in solution using the combination of ultrasound and persulfate anions to identify the factors affecting the kinetics of the process. The effects of reaction time, initial persulfate anion concentration, initial CBZ concentration, ultrasonic power input, solution pH and temperature on CBZ removal efficiency were examined. The sulfate radical oxidation of CBZ in the presence of ultrasonic irradiation showed a significant synergistic effect on CBZ removal. It is found that up to 89.4% CBZ removal efficiency was achieved after 120 min reaction. The removal process of CBZ in solution could be described using pseudo-first-order kinetics. In this system, sulfate radicals (SO4) were considered to be the mainly oxidant to remove CBZ while ultrasound power input could affect CBZ removal efficiency significantly. Changing solution pH influenced the CBZ removal efficiency and the best performance would be achieved at pH 5.0.  相似文献   

9.
In minimal processing industry, chlorine is widely used in the disinfection process and ultrasound (US) increases the disinfection efficacy of chlorine and reduces the cross-contamination incidence during washing. Tap water (TW), which has no disinfection effect, is generally used to rinse off sanitizer residues on the surface of disinfected fresh-cut vegetables. In this study, aqueous ozone (AO), a low-cost and residue-free sanitizer, was used to replace TW rinsing in combination with US (28 kHz)–chlorine (free chlorine [FC] at 10 ppm, a concentration recommended for industrial use) for the disinfection of fresh-cut lettuce as a model. US–chlorine (40 s) + 2.0 ppm AO (60 s) treatment resulted in browning spots on lettuce surface at the end of storage. In contrast, US–chlorine (40 s) + 1.0 ppm AO (60 s) did not lead to deterioration of the sensory quality (sensory crispness, color, and flavor) and a change in total color difference, and the activities of browning-related enzymes were significantly lower. Moreover, US–chlorine (40 s) + 1.0 ppm of AO (60 s) treatment led to significantly lower counts of Escherichia coli O157:H7, Salmonella Typhimurium, aerobic mesophilic (AMC), and molds and yeasts (M&Y) on days 0–7 than US–chlorine (60 s) + TW (60 s) and single 1.0 ppm AO (120 s) treatments, suggesting that AO provided an additional disinfection effect over TW, while reducing the overall processing time by 20 s. Cell membrane permeability analysis (alkaline phosphatase, protein, nucleotide, and adenosine triphosphate leakage) showed that the combination with 1.0 ppm AO caused more severe cell membrane damage in E. coli O157:H7 and S. Typhimurium, explaining the higher disinfection efficacy. 16S rRNA sequencing revealed that following US–chlorine (40 s) + 1.0 ppm of AO (60 s) treatment, Massilia and Acinetobacter had higher relative abundances (RAs) on day 7 than after US–chlorine (60 s) + TW (60 s) treatment, whereas the RAs of Escherichia–Shigella was significantly lower, indicating that the former treatment has a superior capacity in maintaining a stable microbial composition. This explains from an ecological point of view why US–chlorine (40 s) + 1.0 ppm of AO (60 s) led to the lowest AMC and M&Y counts during storage. The study results provide evidence that AO has potential as an alternative to TW rinsing to increase the disinfection efficacy of US–chlorine.  相似文献   

10.
In the present study the evaluation of Direct Red 89 (DR89) dye removal from synthetic wastewater by a lab-scale hydrodynamic cavitation (HC) process has been investigated under different operational conditions; the influence of co-existing cations and anions was applied using synthetic wastewater to assess whether the DR89 removal was enhanced. To study the effect of operational parameters, an empirical approach was adopted for the modeling of the HC process. The results showed that the DR89 degradation rate was strongly influenced by solution pH, reaction time and initial DR89 concentration. The removal efficiencies of DR89 were enhanced remarkably with the reaction time increment. When the initial concentration of DR89 increased from 30 to 90 mg/L, the DR89 removal efficiency decreased from 36.3 ± 3.8% to 17.5 ± 2.5%. In addition, the highest DR89 removal efficiency (75.4 ± 3.4%) was observed at a solution pH of 3. At a solution pH of 8, the DR89 removal efficiency was 18.4 ± 1.1%. An initial DR89 concentration of 80 mg/L was 75.4 ± 5.1% degraded after 130 min at a solution pH of 3. The results indicated that a synergistic effect occurred due to the added ions except for HCO3. The removal of DR89 by the HC process was extremely enhanced with NO3 ions with synergetic index higher than 2.5. Kinetic studies revealed that the decolorization of DR89 by HC followed a first order kinetic mechanism. The comparison between the predicted results of the empirical model and experimental data was also conducted. The empirical model described the DR89 removal efficiency under different conditions (R2: 0.93) and the results showed the HC reaction to be a useful technology for the treatment of dye in the textile wastewater.  相似文献   

11.
Sonochemical removal of 2,4-dinitrophenol (DNP) has been investigated using ultrasonic bath, with an operating capacity of 7 L, fitted with a large transducer with longitudinal vibrations having a 1 kW rated power output and operating frequency of 25 kHz. It has been revealed from calorimetric studies that maximum power is dissipated at a capacity of 7 L. The concentration of DNP has been monitored with an objective of evaluation of the efficacy of ultrasonic reactor in combination with process intensifying approaches for the removal of DNP. The effect of operating pH and additives such as hydrogen peroxide and ferrous iron activated persulfate on the extent of removal of DNP has been investigated. It has been observed that the extent of removal is greater at lower pH (pH 2.5 and 4) than at higher pH (pH 10). The combined treatment strategies such as ultrasound (US)/Fenton, US/advanced Fenton and US/CuO/H2O2 have also been investigated with an objective of obtaining complete removal of DNP using hybrid treatment strategies. The extent of removal has been found to increase significantly in US/Fenton process (98.7%) as compared to that using US alone (5.8%) which demonstrates the efficacy of the combined process. First order kinetics has been fitted for all the approaches investigated in the work. Calculations of cavitational yield indicated the superiority of the reactor design as compared to the conventional ultrasonic horn type reactors. The main intermediates formed during the process of removal of DNP have been identified.  相似文献   

12.
This article aims to apply the ultrasound technique in the field of clean technology to protect environment. The principle of sonochemistry is conducted here to degrade pesticides in simulated industrial wastewater resulted from a factory manufacturing pesticides namely diazinon. Diazinon pesticide selected in this study for degradation under high frequency ultrasound wave. Three different initial concentrations of diazinon (800, 1200, and 1800 ppm), at different solution volumes were investigated in to degrade dissolved diazinon in water. Ultrasound device with 1.7 MHz, and 0.044 cm diameter, was used to study the degradation process.

It is found that as the concentration of diazinon increased, the degradation is also increasing, and when the solution volume increases, the ability to degraded pesticides decreases. The experimental results showed an optimum condition achieved for degradation of diazinon at 1200 ppm as initial concentration and 50 ml solution volume. Kinetic modeling applied for the obtained results showed that the degradation of diazinon by high ultrasound frequency wave followed a pseudo-first-order model with apparent rate constant of around of 0.01 s−1.  相似文献   


13.
Su S  Guo W  Yi C  Leng Y  Ma Z 《Ultrasonics sonochemistry》2012,19(3):469-474
Degradation of the antibiotics amoxicillin in aqueous solution using sulphate radicals under ultrasound irradiation was investigated. The preliminary studies of optimal degradation methodology were conducted with only oxone (2KHSO5·KHSO4·K2SO4), cobalt activated oxone (oxone/Co2+), oxone + ultrasonication (oxone/US) and cobalt activated oxone + ultrasonication (oxone/Co2+/US). The chemical oxygen demand (COD) removal efficiency were in the order of oxone < oxone/Co2+ < oxone/US < oxone/Co2+/US for the amoxicillin solution. The variables considered for the effect of degradation were the temperature, the power of ultrasound, the concentration of oxone, as well as catalyst and the initial amoxicillin concentration. More than 98% of COD removal was achieved within 60 min under optimum operational conditions. Comparative analysis revealed that the sulfate radicals had the high oxidation potential and the use of ultrasound irradiation reduced the energy barrier of the reaction and increased the COD removal efficiency of organic pollutants. The degradation of amoxicillin follows the first-order kinetics.  相似文献   

14.
The photo-Fenton degradation of carbamazepine (CBZ) assisted with ultrasound radiation (US/UV/H2O2/Fe) was tested in a lab thin film reactor allowing high TOC removals (89% in 35 min). The synergism between the UV process and the sonolytic one was quantified as 55.2%.To test the applicability of this reactor for industrial purposes, the sono-photo-degradation of CBZ was also tested in a thin film pilot plant reactor and compared with a 28 L UV-C conventional pilot plant and with a solar Collector Parabolic Compound (CPC). At a pilot plant scale, a US/UV/H2O2/Fe process reaching 60% of mineralization would cost 2.1 and 3.8 €/m3 for the conventional and thin film plant respectively. The use of ultrasound (US) produces an extra generation of hydroxyl radicals, thus increasing the mineralization rate.In the solar process, electric consumption accounts for a maximum of 33% of total costs. Thus, for a TOC removal of 80%, the cost of this treatment is about 1.36 €/m3. However, the efficiency of the solar installation decreases in cloudy days and cannot be used during night, so that a limited flow rate can be treated.  相似文献   

15.
紫外波段有机染料DMT掺杂SiO2薄膜的光谱特性   总被引:1,自引:1,他引:0  
本文采用溶胶凝胶法合成了紫外波段有机染料DMT掺杂SiO2薄膜和块体材料薄膜中掺杂浓度高达124×10-2mol/L,块体材料浓度掺至15×10-3mol/L由于SiO2“笼”的束缚作用,在荧光光谱中未观察到荧光猝灭现象;由于SiO2“笼”的极化作用,370nm的发射峰较其在环己烷中发生了34~44nm左右的红移;580~590nm的发射峰的量子效率比370nm的发射峰略高.  相似文献   

16.
A supercritical fluid extraction process using supercritical carbon dioxide for the isolation of chlororganic and phosphororganic pesticides from human hair is developed. The effect of process parameters (temperature, pressure, duration) on the efficiency of pesticide extraction is studied. The gas chromatography-mass spectrometry technique is used for the quantitative analysis of pesticide concentration in hair.  相似文献   

17.
Ultrasound-assisted soil washing processes were investigated for the removal of heavy metals (Cu, Pb, and Zn) in real contaminated soils using HCl and EDTA. The ultrasound-assisted soil washing (US/Mixing) process was compared with the conventional soil washing (Mixing) process based on the mechanical mixing. High removal efficiency (44.8% for HCl and 43.2% for EDTA) for the metals was obtained for the most extreme conditions (HCl 1.0 M or EDTA 0.1 M and L:S = 10:1) in the Mixing process. With the aide of ultrasound, higher removal efficiency (57.9% for HCl and 50.0% for EDTA) was obtained in the same extreme conditions and similar or higher removal efficiency (e.g., 54.7% for HCl 0.5 M and L:S = 10:1 and 50.5% for EDTA 0.05 M and L:S = 5:1) was achieved even in less extreme conditions (lower HCl or EDTA concentration and L:S ratio). Therefore, it was revealed that the US/Mixing was advantageous over the conventional Mixing processes in terms of metal removal efficiency, consumption of chemicals, amount of generated washing leachate, and volume/size of washing reactor. In addition, the heavy metals removal was enhanced for the smaller soil particles in the US/Mixing process. It was due to more violent movement of smaller particles in slurry phase and more violent sonophysical effects. In order to understand the mechanism of ultrasonic desorption, the desorption test was conducted using the paint-coated beads with three sizes (1, 2, and 4 mm) for the free and attached conditions. It was found that no significant desorption/removal of paint from the beads was observed without the movement of beads in the water including floatation, collision, and scrubbing. Thus, it was suggested that the simultaneous application of the ultrasound and mechanical mixing could enhance the physical movement of the particles significantly and the very high removal/desorption could be attained.  相似文献   

18.
In this work, after exploring the first report on the synergism of combining ultrasound (US: 600 kHz) and chlorine toward the degradation of Allura Red AC (ARAC) textile dye, as a contaminant model, the impact of various mineral water constituents (Cl, SO42−, NO3, HCO3 and NO2) and natural organic matter, i.e., humic acid (HA), on the performance of the US/chlorine sono-hybrid process was assessed for the first time. Additionally, the process effectiveness was evaluated in a real natural mineral water (NMW) of a known composition. Firstly, it was found that the combination of ultrasound and chlorine (0.25 mM) at pH 5.5 in cylindrical standing wave ultrasonic reactor (f = 600 kHz and Pe = 120 W, equivalent to PA ∼ 2.3 atm) enhanced in a drastic manner the degradation rate of ARAC; the removal rate being 320% much higher than the arithmetic sum of the two separated processes. The source of the synergistic effect was attributed to the effective implication of reactive chlorine species (RCS: Cl, ClO and Cl2) in the degradation process. Radical probe technique using nitrobenzene (NB) as a specific quencher of the acoustically generated hydroxyl radical confirmed the dominant implication of RCS in the overall degradation rate of ARAC by US/chlorine system. Overall, the presence of humic acid and mineral anions decreased the efficiency of the sono-hybrid process; however, the inhibition degrees depend on the type and the concentration of the selected additives. The reaction of these additives with the generated RCS is presumably the reason for the finding results. The inhibiting effect of Cl, SO42−, NO3 and NO2 was more pronounced in US/chlorine process as compared to US alone, whereas the inverse scenario was remarked for the effect of HA. These outcomes were associated to the difference in the reactivity of HA and mineral anions toward RCS and OH oxidizing species, in addition to the more selective character of RCS than hydroxyl radical. The displacement of the reaction zone with increasing the additive concentration may also be another influencing factor that favors competition reactions, which subsequently reduce the available reactive species in the reacting medium. The NMW exerted reductions of 43% and 10% in the process efficiency at pH 5.5 and 8, respectively, thereby confirming the RCS-quenching mechanism by the water matrix constituents. Hence, this work provided a precise understanding of the overall mechanism of chlorine activation by ultrasound to promote organic compounds degradation in water.  相似文献   

19.
A system of ultrasound radiation coupled with Zn0 was applied to degrade diclofenac. The effects of initial pH, dosage of Zn0 and ultrasound density were investigated. To further explore the mechanism of the microcosmic reaction, the fresh and used Zn0 powders were characterized by SEM, XRD and XPS. Radical scavengers were used to determine the oxidation performance of strong oxidizing free radicals on diclofenac, including hydroxyl radicals and superoxide radicals. The results showed that the optimum removal of diclofenac reached to over 85% at pH of 2.0 in 15 min, with Zn0 dosage of 0.1 g/L and ultrasound density of 0.6 W/cm3. TOC removal of 72.6% in 15 min and dechlorination efficiency of diclofenac reached 70% in 30 min. Characterization results showed that a ZnO membrane was generated on the surface of Zn particles after use. According to the mass spectrometry results, several possible pathways of diclofenac degradation were proposed, and most diclofenac was turned into micro-molecules or CO2 finally. The synergistic effect of US/Zn0 in the reactions led to a proposed degradation mechanism in which zinc could directly attack the target contaminant diclofenac because of its good reducibility with the auxiliary functions of ultrasonic irradiation, mechanical shearing and free radical oxidation.  相似文献   

20.
MXene, a new family of two dimensional materials, was utilized as a sonocatalyst in an ultrasonic treatment (US) process for removal of methylene blue (MB) and acid blue 80 (AB). The physico-chemical properties of MXene were characterized using scanning electron microscopy, transmission electron microscopy, porosimetry, and a zeta potential analyzer. Degradation of dyes by US was systemically investigated under several experimental conditions including: power density of US (45, 90, 135, and 180 W L−1), frequency of US (28 and 970 kHz), pH of dye solution (3.5, 7, and 10.5), solution temperature (293, 303, and 313 K), and addition of hydroxyl radical promotor (H2O2) and scavenger (t-BuOH) to concentrations of 25 mM. Based on the experimental results, the quantity of H2O2, which was used as an indicator of hydroxyl radical concentration, was an important factor in determining the degradation rate of MB and AB in this US study. Additionally, synergetic indices for removal of both dyes were higher than 1.0 in all cases, indicating the outstanding efficiency of MXene as a sonocatalyst in the US reactor for removal of both, due to an increase in both (i) the quantity of H2O2 in the US reactor and (ii) active sites for adsorbates from dispersion effects. A stability test on MXene in the US process was conducted using X-ray diffraction and five-cycle recycling performance tests. Based on our experimental data, MXene can be utilized as a sonocatalyst in the US process for a high removal rate for dyes (e.g., MB).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号