首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polysaccharides of β-d-glucan configuration have well-known antioxidant activity against reactive free radicals generated from the oxidation of metabolic processes. In this study, β-d-glucan-polysaccharides extracted from Ganoderma lucidum were incorporated in palm olein based nanoemulsions which act as carrier systems to enhance the delivery and bioactivity of these polysaccharides and could be potentially useful for skin care applications. Initially response surface statistical design (Central Composite Design – CCD) was subjected to optimize the formulation variables of oil-in-water (O/W) nanoemulsions induced by ultrasound. The optimal formulation variables as predicted by CCD resulted in considerably improving the physical characteristics of ultrasonically formulated nanoemulsions by minimizing their droplet size, polydispersity index and viscosity. Moreover, the β-d-glucan-loaded nanoemulsions exhibited good stability over 90 days under different storage conditions (4 °C and 25 °C). The studies using palm olein based β-d-glucan-loaded nanoemulsion generated using ultrasound confirm higher antioxidant activity as compared to free β-d-glucan.  相似文献   

2.
In this work, the effects of thickeners and tonicity towards producing stable palm oil-based water-in-oil-in-water (W/O/W) multiple nanoemulsion using ultrasound and microfluidizer were investigated. Palm oil, Sucragel, polyglycerol polyricinoleate, Tween 80, Xanthan gum, and NaCl were used. W/O/W was formed under the optimized conditions of ultrasound at 40% amplitude and for 180 s of irradiation time, whereas for the microfluidizer, the optimized conditions were 350 bar and 8 cycles. This is the first work that successfully utilized Sucragel (oil-based thickener) in imparting enhanced stability in W/O/W. W/O/W with isotonic stabilization produced the lowest change in the mean droplet diameter (MDD), NaCl concentration, and water content by 1.5%, 2.6%, and 0.4%, respectively, due to reduced water movement. The final optimized W/O/W possessed MDD and dispersity index of 175.5 ± 9.8 and 0.232 ± 0.012, respectively. The future direction of formulating stable W/O/W would be by employing oil phase thickeners and isotonicity. The observed ~12 times lesser energy consumed by ultrasound than microfluidizer to generate a comparable droplet size of ~235 nm, further confirms its potential in generating the droplets energy-efficiently.  相似文献   

3.
In this study, biodegradable polymeric nanocapsules were prepared by sequential deposition of food-grade polyelectrolytes through the self-assembling process onto the oil (medium chain triglycerides) droplets enriched with curcumin (lipophilic bioactive compound). Optimum conditions were used to prepare ultrasound-assisted nanoemulsions stabilized by octenyl-succinic-anhydride (OSA)-modified starch. Negatively charged droplets (−39.4 ± 1.84 mV) of these nanoemulsions, having a diameter of 142.7 ± 0.85 nm were used as templates for the fabrication of nanocapsules. Concentrations of layer-forming cationic (chitosan) and anionic (carboxymethylcellulose) biopolymers were optimized based on the mean droplet/particle diameter (MDD/MPD), polydispersity index (PDI) and net charge on the droplets/capsules. Prepared core–shell structures or nanocapsules, having MPD of 159.85 ± 0.92 nm, were characterized by laser diffraction (DLS), ζ-potential (ZP), atomic force microscopy (AFM), transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM). Furthermore, physical stability of curcumin-loaded nanocapsules in suspension was determined and compared at different storage temperatures. This study may provide information regarding the formation of ultrasound-assisted polymeric nanocapsules from the nanoemulsion templates which could be helpful in the development of delivery systems for lipophilic food bioactives.  相似文献   

4.
With the steady increase in the consumption of ultra-processed foods, there is growing interest in sustainable diets that include more plant protein. However, little information is available regarding the structural and functional properties of cactus (Opuntia ficus-indica) seed protein (CSP), a by-product of the cactus seed food-processing chain. This study aimed to explore the composition and nutritional value of CSP and reveal the effects of ultrasound treatment on protein quality. Protein chemical structure analysis showed that an appropriate intensity of ultrasound treatment (450 W) could significantly increase protein solubility (96.46 ± 2.07%) and surface hydrophobicity (13.76 ± 0.85 μg), decrease the content of T-SH (50.25 ± 0.79 μmol/g) and free-SH (8.60 ± 0.30 μmol/g), and enhance emulsification characteristics. Circular dichroism analysis further confirmed that the ultrasonic treatment increased the α-helix and random coil content. Amino acid analysis also suggested that ultrasound treatment (450 W) increased the hydrophobic amino acid content. To evaluate the impact of changes in the chemical structure, its digestion behavior was studied. The results showed that ultrasound treatment increased the release rate of free amino acids. Furthermore, nutritional analysis showed that the digestive products of CSP by ultrasound treatment can significantly enhance the intestinal permeability, increase the expression of ZO-1, Occludin and Claudin-1, thus repairing LPS induced intestinal barrier disfunction. Hence, CSP is a functional protein with high value, and ultrasound treatment is recommended. These findings provide new insights into the comprehensive utilization of cactus fruits.  相似文献   

5.
In the present investigation, the operating efficiency of a bench-top air-driven microfluidizer has been compared to that of a bench-top high power ultrasound horn in the production of pharmaceutical grade nanoemulsions using aspirin as a model drug. The influence of important process variables as well as the pre-homogenization and drug loading on the resultant mean droplet diameter and size distribution of emulsion droplets was studied in an oil-in-water nanoemulsion incorporated with a model drug aspirin. Results obtained show that both the emulsification methods were capable of producing very fine nanoemulsions containing aspirin with the minimum droplet size ranging from 150 to 170 nm. In case of using the microfluidizer, it has been observed that the size of the emulsion droplets obtained was almost independent of the applied microfluidization pressure (200–600 bar) and the number of passes (up to 10 passes) while the pre-homogenization and drug loading had a marginal effect in increasing the droplet size. Whereas, in the case of ultrasound emulsification, the droplet size was generally decreased with an increase in sonication amplitude (50–70%) and period of sonication but the resultant emulsion was found to be dependent on the pre-homogenization and drug loading. The STEM microscopic observations illustrated that the optimized formulations obtained using ultrasound cavitation technique are comparable to microfluidized emulsions. These comparative results demonstrated that ultrasound cavitation is a relatively energy-efficient yet promising method of pharmaceutical nanoemulsions as compared to microfluidizer although the means used to generate the nanoemulsions are different.  相似文献   

6.
In this study, an emulsion stabilized by soy protein isolate (SPI)-pectin (PC) complexes was prepared to investigate the effects of high-intensity ultrasound (HIU) treatment (150–600 W) on the physicochemical properties, microstructure, and stability of emulsions. The results found that the emulsion treated at 450 W showed the best emulsion stability index (ESI) (25.18 ± 1.24 min), the lowest particle size (559.82 ± 3.17 nm), the largest ζ-potential absolute value (16.39 ± 0.18 mV), and the highest adsorbed protein content (27.31%). Confocal laser scanning microscopy (CLSM) and atomic force microscopy (AFM) revealed that the emulsion aggregation was significantly improved by ultrasound treatment, and the average roughness value (Rq) was the smallest (10.3 nm) at 450 W. Additionally, HIU treatment reduced the interfacial tension and apparent viscosity of the emulsion. Thermal stability was best when the emulsion was treated at 450 W, D43 was minimal (907.95 ± 31.72 nm), and emulsion separation also improved. Consequently, the creaming index (CI) was significantly decreased compared to the untreated sample, indicating that the storage stability of the emulsion was enhanced.  相似文献   

7.
Minimising oil droplet size using ultrasonic emulsification   总被引:1,自引:0,他引:1  
The efficient production of nanoemulsions, with oil droplet sizes of less than 100 nm would facilitate the inclusion of oil soluble bio-active agents into a range of water based foods. Small droplet sizes lead to transparent emulsions so that product appearance is not altered by the addition of an oil phase. In this paper, we demonstrate that it is possible to create remarkably small transparent O/W nanoemulsions with average diameters as low as 40 nm from sunflower oil. This is achieved using ultrasound or high shear homogenization and a surfactant/co-surfactant/oil system that is well optimised. The minimum droplet size of 40 nm, was only obtained when both droplet deformability (surfactant design) and the applied shear (equipment geometry) were optimal. The time required to achieve the minimum droplet size was also clearly affected by the equipment configuration. Results at atmospheric pressure fitted an expected exponential relationship with the total energy density. However, we found that this relationship changes when an overpressure of up to 400 kPa is applied to the sonication vessel, leading to more efficient emulsion production. Oil stability is unaffected by the sonication process.  相似文献   

8.
The effects of high-energy fabrication methods, namely high-pressure homogenization (HPH) and ultrasonication (US), on physicochemical properties of flaxseed oil-in-water nanoemulsions (FNEs) containing clove essential oil (CEO) and/or pomegranate peel extract (PPE) were studied during storage at 4 and 25 °C. Nanoemulsions with relatively similar average droplet size were prepared by HPH and/or US. An increase in droplet size was observed over time. Lower storage temperature and fabrication by US increased Ostwald ripening rate. Higher storage temperature and fabrication by US decreased the centrifugal stability of nanoemulsions. CEO revealed better antioxidant properties than PPE. The oxidative stability was evaluated by determining secondary oxidation products, and fatty acids profile. The absence of antioxidant, fabrication by US, and higher storage temperature decreased the oxidative stability of nanoemulsions. The results of this study might be helpful in controlling the oxidation of FNEs during long-term storage and in designing functional foods and beverages.  相似文献   

9.
The effects of the preparation method (mixing, chemical polymerization, or ultrasound treatment) on the structure and functional properties of soy protein isolate-(–)-epigallocatechin-3-gallate (SPI-EGCG) complexes were examined. The mixing treated SPI-EGCG samples (M−SE) were non-covalently linked, while the chemical polymerization and ultrasound treated SPI-EGCG samples (C-SE and U-SE, respectively) were bound covalently. The covalent binding of EGCG with protein improved the molecular weight and changed the structures of the SPI by decreasing the α-helix content. Moreover, U-SE samples had the lowest particle size (188.70 ± 33.40 nm), the highest zeta potential (−27.82 ± 0.53 mV), and the highest polyphenol binding rate (59.84 ± 2.34 %) compared with mixing and chemical polymerization-treated samples. Furthermore, adding EGCG enhanced the antioxidant activity of SPI and U-SE revealed the highest DPPH (84.84 ± 1.34 %) and ABTS (88.89 ± 1.23 %) values. In conclusion, the SPI-EGCG complexes prepared by ultrasound formed a more stable composite system with stronger antioxidant capacity, indicating that ultrasound technology may have potential applications in the preparation of protein-polyphenol complexes.  相似文献   

10.
Bioactive compounds such as ω-3 fatty acids and terpenes, have been associated with beneficial health effects; however, their solubility in the gastrointestinal tract and its bioavailability in the body are low. Nanoemulsions offer a viable alternative to disperse lipophilic compounds and improve their dissolution, permeation, absorption and bioavailability. Enzyme modified phosphatidylcholine (PC) with ω-3 fatty acids was used as emulsifier to stabilize oil-in-water nanoemulsions generated using ultrasound device. These systems were used as carriers of betulinic acid, which has reported anti-carcinogenic activity. Phospholipase-catalyzed modification of PC allowed the incorporation of 50 mol% of ω-3 fatty acids. Formation variables such as oil type and ultrasound amplitude had effects on nanoemulsion characteristics. Incorporation of betulinic acid affected globule size; however, betulinic acid nanoemulsions below 200 nm could be prepared. The conditions under which betulinic acid nanoemulsions were obtained using the modified phosphatidylcholine with the smaller globule size (91 nm) were 10% PC, 25% glycerol, medium chain oil and 30% amplitude for 12 min in the sonicator. Storage temperature had an effect on the stability of the nanoemulsions, at 5 °C we observed the smallest growth in globule size. The use of olive oil decreased the globule size growth during storage of the nanoemulsion stabilized with modified phosphatidylcholine, although globule size obtained was greater than 200 nm. Medium pH had a significant effect on the nanoemulsions; alkaline pH values improved storage stability. These results provide useful information for using this type of carrier system on the formulation of products in the pharmaceutical or food industry.  相似文献   

11.
The use of ultrasound to generate mini-emulsions (50 nm to 1 μm in diameter) and nanoemulsions (mean droplet diameter < 200 nm) is of great relevance in drug delivery, particle synthesis and cosmetic and food industries. Therefore, it is desirable to develop new strategies to obtain new formulations faster and with less reagent consumption. Here, we present a polydimethylsiloxane (PDMS)-based microfluidic device that generates oil-in-water or water-in-oil mini-emulsions in continuous flow employing ultrasound as the driving force. A Langevin piezoelectric attached to the same glass slide as the microdevice provides enough power to create mini-emulsions in a single cycle and without reagents pre-homogenization. By introducing independently four different fluids into the microfluidic platform, it is possible to gradually modify the composition of oil, water and two different surfactants, to determine the most favorable formulation for minimizing droplet diameter and polydispersity, employing less than 500 µL of reagents. It was found that cavitation bubbles are the most important mechanism underlying emulsions formation in the microchannels and that degassing of the aqueous phase before its introduction to the device can be an important factor for reduction of droplet polydispersity. This idea is demonstrated by synthetizing solid polymeric particles with a narrow size distribution starting from a mini-emulsion produced by the device.  相似文献   

12.
In this study, nanoemulsions for skincare products were continuously produced using a hydrodynamic cavitation reactor (HCR) designed with a rotor and stator. The key component of this research is the utilization of a 3D-printed rotor in a HCR for the production of an oil-in-water nanoemulsion. Response surface methodology was used to determine the process conditions, such as speed of the rotor, flow rate, as well as, Span60, Tween60, and mineral oil concentrations, for generating the optimal droplet size in the nanoemulsion. The results showed that a droplet size of 366.4 nm was achieved under the recommended conditions of rotor speed of 3500 rpm, flow rate of 3.3 L/h, Span60 concentration of 2.36 wt%, Tween60 concentration of 3.00 wt%, and mineral oil concentration of 1.76 wt%. Moreover, the important characteristics for consideration in skincare products, such as polydispersity index, pH, zeta potential, viscosity, stability, and niacin released from formulations, were also assessed. For the niacin release profile of emulsion and nanoemulsion formulations, different methods, such as magnetic stirring, ultrasound, and hydrodynamic cavitation, were compared. The nanoemulsion formulations provided a greater cumulative release from the formulation than the emulsion. Particularly, the nanoemulsion generated using the HCR provided the largest cumulative release from the formulation after 12 h. Therefore, the present study suggests that nanoemulsions can be created by means of hydrodynamic cavitation, which reduces the droplet size, as compared to that generated using other techniques. The satisfactory results of this study indicate that the rotor-stator-type HCR is a potentially cost-effective technology for nanoemulsion production.  相似文献   

13.
The specific molecular behavior of myofibrillar proteins (MPs) in low-salt media limits the development of muscle protein-based emulsions. This study aimed to evaluate the potential of high-intensity ultrasound (HIU; 150, 300, 450, and 600 W) to improve the physical stability of MP emulsion at low ionic strength and decipher the underlying mechanism. According to the physical stability analysis, HIU pretreatment, especially at 450 W power, significantly improved the physical stability of MP emulsions, as evidenced by the reduced particle size, enhanced inter-droplet interactions, and increased uniformity of the droplet size distribution (p < 0.05). The results of interfacial protein composition, Fourier transform infrared spectroscopy analysis, and microscopic morphology observation of the aqueous MP suspension suggested that HIU induced the depolymerization of filamentous myosin polymers and inhibited the subsequent self-assembly behavior. These effects may facilitate protein adsorption and molecular rearrangement at the oil–water interface, forming a complete interfacial layer and, thus, droplet stabilization. Confocal laser scanning microscopy observations further confirmed these results. In conclusion, these findings provide direct evidence for the role of HIU in improving the physical stability of MP emulsions at low ionic strength.  相似文献   

14.
The effects of ultrasound combined (25 kHz, 400 ± 20 W/L, ultrasonic time of 5, 10 and 15 min) with soy protein isolate processing on gelling properties of low-salt silver carp surimi, aggregation and conformation of myofibrillar protein were investigated. The results revealed that, compared with only adding soy protein isolate components, ultrasound-assisted soy protein isolate had a more obvious effect on the protein structure in low-salt surimi, leading to the decrease in α-helix and total sulfhydryl contents, and the increase in β-sheet content and protein solubility. As a result, more proteins participated in the formation of the gel network, and significant improvements in hardness, gel strength and water-holding capacity of the low-salt surimi gel were observed, while the myosin heavy chain in SDS-PAGE was weakened. The low-field NMR results showed that the initial relaxation time of T2 was apparently shorter, the free water content decreased and the bound water content increased under the action of ultrasound. Scanning electron microscope observation found that the surimi gel treated by ultrasound exhibited smaller holes, and had a more stable and denser network structure. In conclusion, the results of our work demonstrated that ultrasound combined with soy protein isolate can significantly improve the gel quality properties of low-salt silver carp.  相似文献   

15.
In this study, a soy protein isolate (SPI)-pectin (PC) complex was prepared, and the effects of different high intensity ultrasound (HIU) powers on the structure and solubility of the complex were studied. Fourier transform infrared (FTIR) spectroscopy analysis exhibited that with increasing HIU power, the α-helix content of the SPI in the complex was significantly reduced, and the random coil content increased; however, an opposite trend appeared after higher power treatments. Fluorescence spectra showed that HIU treatment increased the fluorescence intensity of the complex, and the surface hydrophobicity was increased. The trend of the protein structure studied by Raman spectroscopy was similar to that of FTIR and fluorescence spectroscopy. When the HIU treatment was performed for 15 min and at 450 W power, the particle size of the complex was 451.85 ± 2.17 nm, and the solubility was 89.04 ± 0.19 %, indicating that the HIU treatment caused the spatial conformation of the protein to loosen and improved the functional properties of the complex. Confocal laser scanning microscopy (CLSM) revealed that the complex after HIU treatment exhibited improved dispersibility in water and smaller particle size. Gel electrophoresis results indicated that HIU treatment did not affect the protein subunits of the complex. Therefore, the selection of a suitable HIU treatment power can effectively improve the structural properties and solubility of SPI in the complex, and promote the application of the SPI-PC complex in food processing and industries.  相似文献   

16.
Ultrasonically-induced nanoemulsions have been widely investigated for the development of functional food, cosmetics, and pharmaceuticals due to ideal droplet sizes (DS), low polydispersity index (PDI), and superior physical stability. However, a series of frequently-used ultrasonic set-ups mainly suffered from a low ultrasonic energy efficiency caused by the large acoustic impedance and energy consumption, subordinately confronted with a low throughput, complicated fabrication with complex structure and weak ultrasonic cavitation. Herein, we employed a typical ultrasonic microreactor (USMR) that ensured the high-efficient energy input and generated intense cavitation behavior for efficient breakage of droplets and continuous production of unified oil-in-water (O/W) nanoemulsions in a single cycle and without any pre-emulsification treatment. The emulsification was optimized by tuning the formula indexes, technological parameters, and numerical analysis using Response Surface Methodology (RSM), followed by a comparison with the emulsification by a traditional ultrasonic probe. The USMR exhibited superior emulsification efficiency and easy scale-up with remarkable uniformity by series mode. In addition, concurrent and uniform nanoemulsions with high throughput could also be achieved by a larger USMR with high ultrasonic power. Based on RSM analysis, uniform DS and PDI of 96.4 nm and 0.195 were observed under the optimal conditions, respectively, well consistent with the predicted values. Impressively, the optimal nanoemulsions have a uniform spherical morphology and exhibited superior stability, which held well in 45 days at 4℃ and 25℃. The results in the present work may provide a typical paradigm for the preparation of functional nanomaterials based on the novel and efficient emulsification tools.  相似文献   

17.
In this study, the influence of multi-frequency ultrasound irradiation on the functional properties and structural characteristics of gluten, as well as the textural and cooking characteristics of the noodles were investigated. Results showed that the textural and cooking characteristics of noodles that contain less gluten pretreated by multi-frequency ultrasonic were ultrasonic frequency dependent. Moreover, the noodles that contain a smaller amount of sonicated gluten could achieve the textural and cooking quality of commercial noodles. There was no significant difference in the cooking and texture characteristics between commercial noodles and noodles with 12%, 11%, and 10% gluten pretreated by single-frequency (40 kHz), dual-frequency (28/40 kHz), and triple-frequency sonication (28/40/80 kHz), respectively. Furthermore, the cavitation efficiency of triple-frequency ultrasound was greater than that of dual-frequency and single-frequency. As the number of ultrasonic frequencies increased, the solubility, water holding capacity and oil holding capacity of gluten increased significantly (p < 0.05), and the particle size was reduced from 197.93 ± 5.28 nm to 110.15 ± 2.61 nm. Furthermore, compared to the control group (untreated), the UV absorption and fluorescence intensity of the gluten treated by multi-frequency ultrasonication increased. The surface hydrophobicity of gluten increased from 8159.1 ± 195.87 (untreated) to 11621.5 ± 379.72 (28/40/80 kHz). Raman spectroscopy showed that the α-helix content of all sonicated gluten protein samples decreased after sonication, while the β-sheet and β-turn content increased, and tryptophan and tyrosine residues were exposed. Through scanning electron microscope (SEM) analysis, the gluten protein network structure after ultrasonic treatment was loose, and the pore size of the gluten protein network increased from about 10 μm (untreated) to about 26 μm (28/40/80 kHz). This work elucidated the effect of ultrasonic frequency on the performance of gluten, indicating that with increasing frequency combination increases, the ultrasound effect became more pronounced and protein unfolding increased, thereby impacting the functional properties and the quality of the final product. This study provided a theoretical basis for the application of multi-frequency ultrasound technology in the modification of gluten protein and noodle processing.  相似文献   

18.
《Ultrasonics sonochemistry》2014,21(5):1866-1874
This study investigated the mechanical bioeffects exerted by acoustic droplet vaporization (ADV) under different experimental conditions using vessel phantoms with a 200-μm inner diameter but different stiffness for imitating the microvasculature in various tumors. High-speed microscopy, passive cavitation detection, and ultrasound attenuation measurement were conducted to determine the morphological characteristics of vascular damage and clarify the mechanisms by which the damage was initiated and developed. The results show that phantom erosion was initiated under successive ultrasound exposure (2 MHz, 3 cycles) at above 8-MPa peak negative pressures (PNPs) when ADV occurred with inertial cavitation (IC), producing lesions whose morphological characteristics were dependent on the amount of vaporized droplets. Slight injury occurred at droplet concentrations below (2.6 ± 0.2) × 106 droplets/mL, forming shallow and rugged surfaces on both sides of the vessel walls. Increasing the droplet concentration to up to (2.6 ± 0.2) × 107 droplets/mL gradually suppressed the damage on the distal wall, and turned the rugged surface on the proximal wall into tunnels rapidly elongating in the direction opposite to ultrasound propagation. Increasing the PNP did not increase the maximum tunnel depth after the ADV efficiency reached a plateau (about 71.6 ± 2.7% at 10 MPa). Increasing the pulse duration effectively increased the maximum tunnel depth to more than 10 times the diameter of the vessel even though there was no marked enhancement in IC dose. It can be inferred that substantial bubble generation in single ADV events may simultaneously distort the acoustic pressure distribution. The backward ultrasound reinforcement and forward ultrasound shielding relative to the direction of wave propagation augment the propensity of backward erosion. The results of the present work provide information that is valuable for the prevention or utilization of ADV-mediated mechanical bioeffects in clinical applications.  相似文献   

19.
The effects of two types (energy-divergent/gathered) of ultrasound pretreatment of protein on the Maillard reaction of protein-hydrolysate from grass carp (Ctenopharyngodon idella) were studied. The test and analysis of Fourier transform infrared spectroscopy, surface hydrophobicity and atomic force microscopy of protein, peptide concentration, molecular weight distribution and free amino acid content of protein-hydrolysate were performed to reveal the mechanism. Also, the sensory characteristics of Maillard reaction products were evaluated. Results showed that Maillard reaction products presented higher absorbance value at 294 and 420 nm after pretreated by two types of ultrasound compared to that of control. The grafting degree value of products pretreated by energy-divergent ultrasound increased by 13.87%. Both of these two types of ultrasound pretreatment showed higher (p < 0.05) value of grafting degree compared to that of positive control (thermal denaturation). The random coil content and surface hydrophobicity of protein improved significantly (p < 0.05), and the depth distribution of protein molecules narrowed down after pretreated by ultrasound, especially energy-divergent type ultrasound. The change of protein structure increased small molecular peptide/amino acid content in protein-hydrolysate, so that it promoted the Maillard reaction process of protein-hydrolysate and glucose. The mouthfulness and overall acceptance of Maillard reaction products increased after pretreated by two types of ultrasound. Results indicated that ultrasound, especially energy-divergent type ultrasound pretreatment of protein was an effective method to promote Maillard reaction evolution of protein-hydrolysate from grass carp protein and improved the flavor of Maillard reaction products.  相似文献   

20.
Casein (CAS), a typical protein emulsifier, has functional properties limited by its chemical structure in practical production applications. This study aimed to combine phosphatidylcholine (PC) and casein to form a stable complex (CAS/PC) and improve its functional properties through physical modification (homogeneous and ultrasonic treatment). To date, few studies have explored the effects of physical modification on the stability and biological activity of CAS/PC. Interface behavior analysis showed that compared to homogeneous treatment, PC addition and ultrasonic treatment could decrease the mean particle size (130.20 ± 3.96 nm) and increase the zeta potential (−40.13 ± 1.12 mV), indicating the emulsion is more stable. The chemical structural analysis of CAS showed that PC addition and ultrasonic treatment promoted changes in its sulfhydryl content and surface hydrophobicity, exposing more free sulfhydryl groups and hydrophobic binding sites, thereby enhancing its solubility and improving the stability of the emulsion. Additionally, storage stability analysis revealed that the incorporation of PC with ultrasonic treatment could improve the root mean square deviation value and radius of gyration value of CAS. These modifications resulted in an increase the binding free energy between CAS and PC (−238.786 kJ/mol) at 50 °C, leading to an improvement in the thermal stability of the system. Furthermore, digestive behavior analysis indicated that PC addition and ultrasonic treatment could increase the total FFA release from 667.44 ± 22.33 μmol to 1250.33 ± 21.56 μmol. In conclusion, the study underscores the effectiveness of PC addition and ultrasonic treatment in enhancing the stability and bioactivity of CAS, offering novel ideas for designing stable and healthy emulsifiers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号