首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-resolution Fourier transform spectra of HDSe in the region of the 2nu(3) and 3nu(3) bands were recorded and analyzed for five different (M)Se isotopic HDSe species. Energies obtained from rovibrational analyses of the (002) and (003) states, together with those taken of the (001) state from an earlier study [O. N. Ulenov, G. A. Onopenko, N. E. Tyabaeva, H. Bürger, and W. Jerzembeck, J. Mol. Spectrosc. 198, 27-39 (1999)], were used as input information for a "Global Fit" procedure. This fit provided 34 spectroscopic parameters for the HD(80)Se species which reproduced rotational-vibrational transitions of the (001), (002), and (003) states within experimental accuracy. Corresponding analyses were performed for the other (M)Se (M = 82, 78, 77, and 76) species. Copyright 2000 Academic Press.  相似文献   

2.
For the first time, high-resolution Fourier transform spectra of HDSe in the region of the three polyads, nu(1)/2nu(2), nu(1) + nu(2)/3nu(2), and 2nu(1)/nu(1) + 2nu(2)/nu(2) + nu(3), have been recorded and analyzed. Combined with an earlier investigation of the nu(2) band, and including estimates for the unobserved "dark" 4nu(2) band, these levels were subjected to a "Global Fit," which makes use of relations between parameters within the different polyads. Since there are five isotopic species present in natural HD(M)Se (M = 82, 80, 78, 77, 76), altogether 34 vibration-rotation bands have been studied in the present contribution. The parameters determined by the Global Fit reproduce upper vibrational-rotational energies of all these bands with accuracies close to experimental precision. Copyright 2000 Academic Press.  相似文献   

3.
阐述了全拟合分析方法的理论基础,通过对H2^80Se岔子4个已知转动结构振动带的3516个上态能级的全拟合分析,得到112个基光谱参数,拟合偏并为10.6×10^-3cm^-1,用这套基本光谱参数精确预言了首次记录的H2^80Se分子0和(401,B2)局域模振动带的转动结构,并在简正模 域模下分别拟合得到有效振转光谱参数。将归属得到的H2^80Se分子(500,A1)和(401,B2)振动带的2  相似文献   

4.
A high-resolution Fourier transform spectrum of the D2MSe species (M = 82, 80, 78, 77, and 76) in the region 2300-2500 cm−1 was recorded for the first time and assigned. On the basis of these experimental data, rotation-vibration energies of the (1 1 0) and (0 1 1) vibrational states were fitted, and band centers, and rotational, centrifugal distortion, and resonance interaction parameters were determined for the main D280Se species. The obtained set of 32 fitted parameters reproduces the 647 rotation-vibration energies with a rms deviation of 0.00024 cm−1. The ν1 + ν2 and ν2 + ν3 bands of the other four isotopic species are analyzed as well.  相似文献   

5.
The nu(2) (A(1), 710.157 cm(-1)) and nu(5) (E, 701.717 cm(-1)) fundamental bands of D(3)(28)SiF have been studied by FTIR spectroscopy with a resolution of 2.4 x 10(-3) cm(-1). We assigned 1648 lines for the parallel band (J(max) = 50, K(max) = 21), 4279 for the perpendicular band (J(max) = 52, K(max) = 27), and in addition 671 perturbation-allowed transitions (J(max) = 50, K(max) = 12). The nearly degenerate v(2) = 1 and v(5) = 1 states are linked by (DeltaK = +/-1, Deltal = +/-1) and (DeltaK = +/-2, Deltal = -/+1) interactions, while the l(5) = +/-1 levels of nu(5) interact also by l(2, -1), l(2, 2), and l(2, -4) interactions. The first model with 36 free parameters, taking into account all these resonances through a nonlinear least-squares program, gave standard deviations of 1.56 x 10(-4) cm(-1) for 5997 nonzero-weighted IR data and 138 kHz for 8 MW data from the literature. The second model, in which the main Coriolis term was constrained to a force field value, used 37 parameters and gave similar standard deviations. A new determination of the A(0) and D(0)(K) ground state parameters was performed by two methods: either using differences between "forbidden" transitions differing by 3 in K or letting A(0) and D(0)(K) free in the global fit. The values obtained are fully compatible with those obtained previously by the "loop method." Copyright 2000 Academic Press.  相似文献   

6.
Using 0.002 cm(-1) resolution Fourier transform absorption spectra of an (17)O-enriched ozone sample, an extensive analysis of the nu(3) band together with a partial identification of the nu(1) band of the (17)O(16)O(17)O isotopomer of ozone has been performed for the first time. As for other C(2v)-type ozone isotopomers [J.-M. Flaud and R. Bacis, Spectrochim. Acta, Part A 54, 3-16 (1998)], the (001) rotational levels are involved in a Coriolis-type resonance with the levels of the (100) vibrational state. The experimental rotational levels of the (001) and (100) vibrational states have been satisfactorily reproduced using a Hamiltonian matrix which takes into account the observed rovibrational resonances. In this way precise vibrational energies and rotational and coupling constants were deduced and the following band centers nu(0)(nu(3)) = 1030.0946 cm(-1) and nu(0)(nu(1)) = 1086.7490 cm(-1) were obtained for the nu(3) and nu(1) bands, respectively. Copyright 2000 Academic Press.  相似文献   

7.
The nu(3), nu(5), and nu(6) fundamental bands of the (13)CH(3)D molecule have been studied with Fourier transform infrared spectroscopy. The spectra and results for the parent species (12)CH(3)D (O. N. Ulenikov, G. A. Onopenko, N. E. Tyabaeva, J. Schroderus, and S. Alanko, J. Mol. Spectrosc. 193, 249-259 (1999)) have been used to assign and analyze about 1900 lines belonging to the (13)CH(3)D isotopic species. About 850 ground state combination differences with DeltaK = 0 were calculated, which allowed us to determine the J-dependent ground state rotational constants. The K-dependent constants as well as those describing the a(1)-a(2) (K = 3) splitting were fixed to the values obtained for the (12)CH(3)D species. The (v(3) = 1), (v(5) = 1), and (v(6) = 1) states were fit simultaneously by including the intervibrational interactions in the Hamiltonian. The rotational energies, the rotational and centrifugal distortion constants, as well as the resonance parameters involving the three states have been determined and discussed. Copyright 2000 Academic Press.  相似文献   

8.
High-resolution Fourier transform infrared spectrum of the nu(2) band (1590-1780 cm(-1)) of deuterated formaldehyde D(2)CO has been recorded. More than 2500 rovibrational transitions have been assigned up to J(max) = 52 and K(max)(a) = 17. The upper state v(2) = 1 (A(1)) was found to be perturbed by a DeltaK(a) = 2 interaction with the v(4) = 2 (A(1)) state. To explain the resonance perturbation in the v(2) = 1 state, some lines of the 2nu(4) band (the band center at about 1868 cm(-1)) have also been assigned. Both bands were fitted simultaneously to the Watson-type rotational Hamiltonian using I(r) representation in A reduction, and the mutual interaction was taken into account. As a result, the rotational parameters of the v(2) = 1 state up to eighth order and the interaction parameter have been obtained. Copyright 2001 Academic Press.  相似文献   

9.
Analysis of the high-resolution Fourier transform spectra of the D(2)O first decade was carried out in the framework of the Hamiltonian model which took into account resonance interactions between the seven states, (300), (201), (102), (003), (220), (121), and (022). Assigned from the experimentally recorded spectrum transitions belonged to the four bands, 2nu(1) + nu(3), 3nu(3), nu(1) + 2nu(2) + nu(3), and 3nu(1), gave the possibility both of obtaining rotational, centrifugal distortion, and resonance interaction parameters of "appeared" states, (201), (003), (121), and (300), and of estimating from the fit band centers, rotational, and resonance interaction parameters of the three "dark" states, (220), (022), and (102). Copyright 2000 Academic Press.  相似文献   

10.
Using new high-resolution Fourier transform spectra recorded at the University of Denver in the 2-μm region, a new and more extended analysis of the 2nu(1) + nu(3) and 3nu(3) bands of nitrogen dioxide, located at 4179.9374 and 4754.2039 cm(-1), respectively, has been performed. The spin-rotation energy levels were satisfactorily reproduced using a theoretical model that takes into account both the Coriolis interactions between the spin-rotation energy levels of the (201) vibrational "bright" state with those of the (220) "dark" state. The interactions between the (003) bright state with the (022) dark state were similarly treated. The spin-rotation resonances within each of the NO(2) vibrational states were also taken into account. The precise vibrational energies and the rotational, spin-rotational, and coupling constants were obtained for the two dyads {(220), (201)} and {(022), (003)} of the (14)N(16)O(2) interacting states. From the experimental line intensities of the 2nu(1) + nu(3) and 3nu(3) bands, a determination of their vibrational transition moment constants was performed. A comprehensive list of line positions and line intensities of the {2nu(1) + 2nu(2), 2nu(1) + nu(3)} and the {2nu(2) + 2nu(3), 3nu(3)} interacting bands of (14)N(16)O(2) was generated. In addition, assuming the harmonic approximation and using the Hamiltonian constants derived in this work and in previous studies (A. Perrin, J.-M. Flaud, A. Goldman, C. Camy-Peyret, W. J. Lafferty, Ph. Arcas, and C. P. Rinsland, J. Quant. Spectrosc. Radiat. Transfer 60, 839-850 (1998)), we have generated synthetic spectra for the {(022), (003)}-{(040), (021), (002)} hot bands at 6.3 μm and for the {(220), (201)}-{(100), (020), (001)} hot bands at 3.5 μm, which are in good agreement with the observed spectra. Copyright 2000 Academic Press.  相似文献   

11.
The rotational and torsional structure of the nu(7) and nu(9) degenerate fundamentals of (70)Ge(2)H(6) has been analyzed under high resolution. The torsional structure of both v(7) = 1 and v(9) = 1 states can be fitted by a simple one-parameter formula. The x,y-Coriolis interaction with the parallel nu(5) fundamental was accounted for in the analysis of nu(7). A strong perturbation of the J structure of the E(3s) torsional component of the KDeltaK = -2 subbranches of nu(9) can be explained by the resonance with an E(3s) excited level of the pure torsional manifold. The perturber is centered at 361.58 cm(-1), very close to the value estimated with a barrier height of 285 cm(-1). This confirms that the fundamental torsional wavenumber is close to 103 cm(-1), in good agreement with the "ab initio" prediction. The torsional splittings of all the infrared active degenerate fundamentals, nu(7), nu(8), and nu(9), follow the trend predicted by theory, and have been fitted by exploratory calculations accounting only for the torsional Coriolis-coupling mechanism of all degenerate vibrational fundamentals in several torsional states. This confirms that torsional Coriolis coupling is the dominant mechanism responsible for the decrease of the torsional splitting in the degenerate vibrational states. A higher value of the barrier had to be used for the nu(9) mode. Copyright 2000 Academic Press.  相似文献   

12.
The potential energy surface for the electronic ground state of the hydrogen selenide molecule has been determined previously by Jensen and Kozin [J. Mol. Spectrosc. 160 (1993) 39] in a fitting to experimental data by means of the MORBID computer program. We report here a further refinement of this surface, also made with the MORBID program. With the refined potential surface, we can make predictions of rotation-vibration transition wavenumbers for H2Se, D2Se, and HDSe, and with these predictions we can assign weak spectra of these molecules. We assign here two very weak bands of HD80Se, ν1+ν2+ν3 and 2ν1+ν3. The refinement of the potential energy surface was made possible because (1) the number of vibrational states characterized experimentally for various isotopomers of H2Se has approximately doubled since 1993, and (2) we now have access to larger computers with which we can fit energy spacings of states with J?8, whereas Jensen and Kozin could only use J?5. In the present work, we fitted rotation-vibration energy spacings associated with 24 vibrational states of H280Se with v1?6, v2?3, and v3?2; 11 vibrational states of D280Se with v1?2, v2?3, and v3?2, and 17 vibrational states of HD80Se with v1?3, v2?3, and v3?3. The input data set comprised 3611 energy spacings. In the fitting, we could usefully vary 29 potential energy parameters. The standard deviation of the fitting was 0.12 cm−1 and the root-mean-square deviation for 49 vibrational term values was 0.59 cm−1.  相似文献   

13.
A high-resolution analysis of the {nu(2), nu(3)} and {nu(4), nu(6)} bands of the two isotopomers of chloryl fluoride F(35)ClO(2) and F(37)ClO(2) has been carried out for the first time using simultaneously infrared spectra recorded around 16&mgr;m and 26&mgr;m with a resolution of ca. 0.003 cm(-1) and microwave and submillimeter-wave transitions occurring within the vibrational states 2(1), 3(1), 4(1), and 6(1). Taking into account the Coriolis resonances which link the rotational levels of the {2(1), 3(1)} and the {4(1), 6(1)} interacting states, it was possible to reproduce very satisfactorily the observed transitions and to determine accurate vibrational energies and rotational constants for the upper states 2(1), 3(1), 4(1), and 6(1) of both the (35)Cl and (37)Cl isotopic species. Copyright 2001 Academic Press.  相似文献   

14.
New high-resolution Fourier transform absorption spectra of an (15)N(16)O(2) isotopic sample of nitrogen dioxide were recorded at the University of Bremen in the 6.3-μm region. Starting from the results of a previous study [Y. Hamada, J. Mol. Struct. 242, 367-377 (1991)], a new and more extended analysis of the nu(3) band located at 1582.1039 cm(-1) has been performed. The spin-rotation energy levels were satisfactorily reproduced using a theoretical model which takes into account both the Coriolis interactions between the spin-rotation energy levels of the (001) vibrational state with those of the (020) and (100) states and the spin-rotation resonances within each of the NO(2) vibrational states. Precise vibrational energies and rotational, spin-rotation, and coupling constants were obtained in this way for the first triad of (15)N(16)O(2) interacting states {(020), (100), (001)}. Finally, a comprehensive list of line positions and line intensities of the {nu(1), 2nu(2), nu(3)} interacting bands of (15)N(16)O(2) was generated, using for the line intensities the transition moment operators which were obtained previously for the main isotopic species. Copyright 2000 Academic Press.  相似文献   

15.
16.
High-resolution (Deltavarsigma = 2.3 and 2.9 x 10(-3) cm(-1)) FTIR spectra of natural and (35)Cl monoisotopic CH(3)CF(2)Cl have been recorded at -70 degrees C in the 600-1400 cm(-1) range. The bands nu(7), nu(8), and nu(15) have been rotationally analyzed for both isotopic varieties. With the help of predictions based on nu(8) parameters, the millimeter-wave spectrum of the (35)Cl species in the v(8) = 1 state has been observed and jointly fitted with the IR data. Only a small number of local perturbations have been detected in the spectra. Altogether more than 8000 IR transitions have been fitted with an experimental precision of ca. 3 x 10(-4) cm(-1). Copyright 2000 Academic Press.  相似文献   

17.
Three of the four components of the 3nu(1)+3nu(3) tetrad of (12)C(16)O(2) and (13)C(16)O(2), labeled 30031, 30032, and 30033 in HITRAN notation, have been observed by intracavity laser absorption spectroscopy in the 10 450- to 11 000-cm(-1) region. The rotational analysis has yielded the rovibrational parameters of the vibrational states. The experimental values are found to be in very good agreement with the rovibrational energies recently predicted from variational calculations and reduced effective Hamiltonians. The absolute band intensity of these extremely weak transitions have been measured. The study of the relative intensities within the 3nu(1)+3nu(3) tetrad suggests that part of the oscillator strength is carried by the (22(0)3) state. Copyright 2001 Academic Press.  相似文献   

18.
The spectrum of the nu(9) fundamental band of ethylene-d(4) (C(2)D(4)) has been measured with an unapodized resolution of 0.004 cm(-1) in the frequency range of 2300-2400 cm(-1) using a Fourier transform infrared spectrometer. A total of 549 transitions have been assigned and fitted using a Watson's A-reduced Hamiltonian in the I(r) representation to derive rovibrational constants for the upper state (v(9) = 1) up to five quartic terms with a standard deviation of 0.00087 cm(-1). They represent the most accurate rovibrational constants for the nu(9) band so far. About 30 transitions of K(a)(') = 0, one transition of nu(9) which were identified to be perturbed possibly by the nearby nu(11) and nu(2) + nu(12) transitions, were not included in the final fit. The nu(9) band of C(2)D(4) was found to be basically B-type with an unperturbed band center at 2341.836 94 +/- 0.000 13 cm(-1). Copyright 2000 Academic Press.  相似文献   

19.
We have studied the inclusive photon spectra in Upsilon(2S) and Upsilon(3S) decays using a large statistics data sample obtained with the CLEO III detector. We present the most precise measurements of electric dipole (E1) photon transition rates and photon energies for Upsilon(2S) --> gammachi(bJ)(1P) and Upsilon(3S) --> gammachi(bJ)(2P) (J = 0, 1, 2). We measure the rate for a rare E1 transition Upsilon(3S) --> gammachi(b0)(1P) for the first time. We also set upper limits on the rates for the hindered magnetic dipole (M1) transitions to the eta(b)(1S) and eta(b)(2S) states.  相似文献   

20.
We report the first observations of the spin-singlet bottomonium states h(b)(1P) and h(b)(2P). The states are produced in the reaction e(+)e(-)→h(b)(nP)π(+)π(-) using a 121.4 fb(-1) data sample collected at energies near the Υ(5S) resonance with the Belle detector at the KEKB asymmetric-energy e(+)e(-) collider. We determine M[h(b)(1P)]=(9898.2(-1.0-1.1)(+1.1+1.0)) MeV/c(2) and M[h(b)(2P)]=(10,259.8±0.6(-1.0)(+1.4)) MeV/c(2), which correspond to P-wave hyperfine splittings ΔM(HF)=(+1.7±1.5) and (+0.5(-1.2)(+1.6)) MeV/c(2), respectively. The significances of the h(b)(1P) and h(b)(2P) are 5.5σ and 11.2σ, respectively. We find that the production of the h(b)(1P) and h(b)(2P) is not suppressed relative to the production of the Υ(1S), Υ(2S), and Υ(3S).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号