首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ce–Ti–O supports with different Ce/Ti molar ratios were synthesized by the solvothermal method using hexadecyltrimethylammonium bromide. Pt nanoparticles were then supported by photochemical deposition. The shape, size, and structure of these materials were analyzed by high-resolution transmission electron microscopy. The single CeO2 support was also prepared, consisting of agglomerated cubic particles ranging from ~3 to 8 nm. When titania was combined with ceria, a nanostructured architecture was produced, evidencing the strong influence of Ti in the support structure. Photodeposition of Pt nanoparticles is more efficient on Ce–Ti–O supports than in pristine CeO2. Crystalline Pt nanoparticles (mainly of ~2 to 4 nm) were detected. The catalytic properties of the materials were tested in the selective hydrogenation of cinnamaldehyde to cinnamyl alcohol. It was observed that Pt supported on Ce–Ti–O is more active and selective than Pt on CeO2 or TiO2 separately. The catalyst with 40 mol% Ce leads to total conversion of cinnamaldehyde in a few minutes; however, higher selectivity toward the desired product (cinnamyl alcohol) was obtained with higher amounts of Ce (50 mol%).  相似文献   

2.
Ultrasound (US) has been suggested for many whey processing applications. This study examined the effects of ultrasound treatment on the oxidation of lipids in Cheddar cheese whey. Freshly pasteurized whey (0.86 L) was ultrasonicated in a contained environment at the same range of frequencies and energies for 10 and 30 min at 37 °C. The US reactor used was characterized by measuring the generation of free radicals in deionized water at different frequencies (20–2000 kHz) and specific energies (8.0–390 kJ/kg). Polar lipid (PL), free and bound fatty acids and lipid oxidation derived compounds were identified and quantified before and after US processing using high performance liquid chromatography equipped with an evaporative light scattering detector (HPLC–ELSD), methylation followed by gas chromatography flame ionized detector (GC-FID) and solid phase micro-extraction gas chromatography mass spectrometry (SPME-GCMS), respectively. The highest concentration of hydroxyl radical formation in the sonicated whey was found between 400 and 1000 kHz. There were no changes in phospholipid composition after US processing at 20, 400, 1000 and 2000 kHz compared to non-sonicated samples. Lipid oxidation volatile compounds were detected in both non-sonicated and sonicated whey. Lipid oxidation was not promoted at any tested frequency or specific energy. Free fatty acid concentration was not affected by US treatment per se. Results revealed that US can be utilized in whey processing applications with no negative impact on whey lipid chemistry.  相似文献   

3.
Waste minimization strategy was applied in the current work for synthesis of the catalysts from industrial solid waste, namely desulfurization slag. The starting slag material comprising CaCO3, Ca(OH)2, SiO2, Al2O3, Fe2O3, and TiO2 was processed by various treating agents systematically varying the synthesis parameters. A novel efficient technique – ultrasound irradiation, was applied as an additional synthesis step for intensification of the slag dissolution and crystallization of the new phases. Physico-chemical properties of the starting materials and synthesized catalysts were evaluated by several analytical techniques. Treatment of the industrial slag possessing initially poor crystal morphology and a low surface area (6 m2/g) resulted in formation of highly-crystalline catalysts with well-developed structural properties. Surface area was increased up to 49 m2/g. High basicity of the neat slag as well as materials synthesized on its basis makes possible application of these materials in the reactions requiring basic active sites. Catalytic performance of the synthesized catalysts was elucidated in the synthesis of carbonate esters by carboxymethylation of cinnamyl alcohol with dimethyl carbonate carried out at 150 °C in a batch mode. Ultrasonication of the slag had a positive effect on the catalytic activity. Synthesized catalysts while exhibiting similar selectivity to the desired product (ca. 84%), demonstrated a trend of activity increase for materials prepared using ultrasonication pretreatment. The choice of the treating agent also played an important role in the catalytic performance. The highest selectivity to the desired cinnamyl methyl carbonate (88%) together with the highest activity (TOF35 = 3.89*10−7 (mol/g*s)) was achieved over the material synthesized using 0.6 M NaOH solution as the treating agent with the ultrasound pre-treatment at 80 W for 4 h.  相似文献   

4.
Ultrasound (US) is an emerging technology capable of affecting enzymes and microorganisms, leading to the release of amino acids and the formation of volatile compounds. The effect of different exposure times (0, 3, 6, and 9 min) of US (25 kHz, 128 W) on the proteolysis and volatile compounds of dry fermented sausages during processing (day 0 and 28) and storage (day 1 and 120) was investigated. Lower alanine, glycine, valine, leucine, proline, methionine, and tyrosine levels were observed at the beginning of manufacture for the sample subjected to 9 min of US (p < 0.05) when compared to the control. During the storage period, the samples subjected to US exposure for 3 and 6 min exhibited higher free amino acid levels. A greater formation of hexanal, pentanal, and hexanol was observed in the US-treated samples when compared to the control (p < 0.05), as well as other derivatives from the oxidation reactions during the storage. The use of US (25 kHz and 128 W) in the manufacture of dry fermented sausages can affect the proteolysis and the formation of compounds derived from lipid oxidation during the storage.  相似文献   

5.
《Ultrasonics sonochemistry》2014,21(6):2165-2175
Ultrasonic processing can suit a number of potential applications in the dairy industry. However, the impact of ultrasound treatment on milk stability during storage has not been fully explored under wider ranges of frequencies, specific energies and temperature applications. The effect of ultrasonication on lipid oxidation was investigated in various types of milk. Four batches of raw milk (up to 2 L) were sonicated at various frequencies (20, 400, 1000, 1600 and 2000 kHz), using different temperatures (4, 20, 45 and 63 °C), sonication times and ultrasound energy inputs up to 409 kJ/kg. Pasteurized skim milk was also sonicated at low and high frequency for comparison. In selected experiments, non-sonicated and sonicated samples were stored at 4 °C and were drawn periodically up to 14 days for SPME–GCMS analysis. The cavitational yield, characterized in all systems in water, was highest between 400 kHz and 1000 kHz. Volatile compounds from milk lipid oxidation were detected and exceeded their odor threshold values at 400 kHz and 1000 kHz at specific energies greater than 271 kJ/kg in raw milk. However, no oxidative volatile compounds were detected below 230 kJ/kg in batch systems at the tested frequencies under refrigerated conditions. Skim milk showed a lower energy threshold for oxidative volatile formation. The same oxidative volatiles were detected after various passes of milk through a 0.3 L flow cell enclosing a 20 kHz horn and operating above 90 kJ/kg. This study showed that lipid oxidation in milk can be controlled by decreasing the sonication time and the temperature in the system depending on the fat content in the sample among other factors.  相似文献   

6.
The combination of ultrasound and photochemistry has been used for the oxidation of unsymmetrical 1,4-dihydropyridines to the pyridine derivatives. An ultrasonic probe of 24 kHz frequency and a Hg-lamp of 100 W have been used for this study. The effect of parameters such as ultrasonic intensity, the presence of oxygen and argon atmospheres and also the separate usage of one of these irradiation sources have been studied. Whereas sonication of these compounds alone did not result in the oxidation of them, the use of ultrasound increases the rate of photo-oxidation. The presence of oxygen decreases or increases the rate of reaction, depending on the type of excited state of 1,4-dihydropyridines involved in the reaction.  相似文献   

7.
Gold nanoparticles capping with three types of natural cyclodextrins are synthesized, allowing for precise control over their sizes ranging from 9 to 20 nm. These nanoparticles exhibit remarkable colloidal stability during long-term storage, as well as excellent tolerance to saline, acidic, and alkaline conditions. Importantly, the assembly of nanoparticles is performed by using the silica nanospheres functionalized with cinnamyl group and the gold nanoparticle capping with three types of cyclodextrin, highlighting the selective formation of core-satellite superstructure based on the host–guest molecular recognition on nano-surface between different nanoparticles.  相似文献   

8.
In this study, treatment of an antibiotic compound amoxicillin by medium-high frequency ultrasonic irradiation and/or ozonation has been studied. Ultrasonic irradiation process was carried out in a batch reactor for aqueous amoxicillin solutions at three different frequencies (575, 861 and 1141 kHz). The applied ultrasonic power was 75 W and the diffused power was calculated as 14.6 W/L. The highest removal was achieved at 575 kHz ultrasonic frequency (>99%) with the highest pseudo first order reaction rate constant 0.04 min−1 at pH 10 but the mineralization achieved was around 10%. Presence of alkalinity and humic acid species had negative effect on the removal efficiency (50% decrease). To improve the poor outcomes, ozonation had been applied with or without ultrasound. Ozone removed the amoxicillin at a rate 50 times faster than ultrasound. Moreover, due to the synergistic effect, coupling of ozone and ultrasound gave rise to rate constant of 2.5 min−1 (625 times higher than ultrasound). In the processes where ozone was used, humic acid did not show any significant effect because the rate constant was so high that ozone has easily overcome the scavenging effects of natural water constituents. Furthermore, the intermediate compounds, after the incomplete oxidation mechanisms, has been analyzed to reveal the possible degradation pathways of amoxicillin through ultrasonic irradiation and ozonation applications. The outcomes of the intermediate compounds experiments and the toxicity was investigated to give a clear explanation about the safety of the resulting solution. The relevance of all the results concluded that hybrid advanced oxidation system was the best option for amoxicillin removal.  相似文献   

9.
Effects of low-intensity ultrasound (at different frequency, treatment time and power) on Saccharomyces cerevisiae in different growth phase were evaluated by the biomass in the paper. In addition, the cell membrane permeability and ethanol tolerance of sonicated Saccharomyces cerevisiae were also researched. The results revealed that the biomass of Saccharomyces cerevisiae increased by 127.03% under the optimum ultrasonic conditions such as frequency 28 kHz, power 140 W/L and ultrasonic time 1 h when Saccharomyces cerevisiae cultured to the latent anaphase. And the membrane permeability of Saccharomyces cerevisiae in latent anaphase enhanced by ultrasound, resulting in the augment of extracellular protein, nucleic acid and fructose-1,6-diphosphate (FDP) contents. In addition, sonication could accelerate the damage of high concentration alcohol to Saccharomyces cerevisiae although the ethanol tolerance of Saccharomyces cerevisiae was not affected significantly by ultrasound.  相似文献   

10.
Li XF  Chi ZG  Xu BJ  Li HY  Zhang XQ  Zhou W  Zhang Y  Liu SW  Xu JR 《Journal of fluorescence》2011,21(5):1969-1977
New aggregation-induced emission (AIE) compounds derived from triphenylethylene were synthesized. The thermal, photophysical, electrochemical and aggregation-induced emissive properties were investigated. All the compounds had strong blue light emission capability and good thermal stability. Their maximum fluorescence emission wavelengths were between 443 to 461 nm in solid states, while their glass transition temperatures ranged from 86 to 129 °C. The decomposition temperatures of the synthesized compounds were in the range of 432–534 °C. The synthesized compounds possessed aggregation-induced emission properties, namely exhibited enhanced fluorescence emission in aggregated states. The highest occupied molecular orbital (HOMO) energy levels estimated from the oxidation potentials were between 5.61 and 5.66 eV and the lowest unoccupied molecular orbital/highest occupied molecular orbital (LUMO/HOMO) energy gap values were found to be in the range of 3.18–3.22 eV. The compounds 4-(4-(2,2-bis(4-(naphthalen-1-yl)phenyl)vinyl)phenyl) dibenzothiophene [(BN)2Bt] and 4-(4-(2,2-di(biphenyl-4-yl)vinyl)phenyl) dibenzothiophene [(BB)2Bt] exhibited vibronic fine-structure photoluminescence spectra when the water fraction was less than 70%.  相似文献   

11.
Effect of high-frequency ultrasonication was examined on wastewater of a cheese manufacturing plant. Tests were carried out at two frequencies (500 kHz and 1 MHz) and two temperatures (22 and 40 °C). Samples were subjected to different energy densities; 7.5, 30.2, 60.5 and 121.0 J/mL at 500 kHz and 7.9, 31.7, 63.4 and 126.8 J/mL at 1 MHz to observe the creaming and recovery of lipid. These energy densities correspond to 30, 120, 240 and 480 s of sonication. Sonication was performed using a single plate transducer and reflector system at 40 W to create standing wave to coalesce and flocculate lipid globules. Recovery was higher at 40 °C after 480 s of sonication at both frequencies (77% at 500 kHz and 75% at 1 MHz). The lowest recovery of 47% was observed at 500 kHz and 22 °C at all applied energy densities. Changes in particle size and turbidity in the bottom aliquot indicated that high-frequency ultrasound caused coagulation and aggregation and settling of colloidal particles. Increase in particle size was observed to be highest at 1 MHz, 40 °C and 480 s of sonication. These results confirm that high-frequency ultrasound standing wave technology can be used to recover lipid from high-lipid dairy wastewater including that from cheese manufacturing.  相似文献   

12.
In this work, the influence of CCl4 on the sonochemical decolorization of anthraquinonic dye Acid Blue 25 (AB25) in aqueous medium was investigated using high frequency ultrasound (1700 kHz). This frequency, reputed ineffective, was tested in order to introduce the ultrasound waves with high frequency in the field of degradation or removal of dyes from wastewater, due to its limited use in this field, and to increase the application of high frequency ultrasound wave in the field of environmental protection. The effects of various parameters such as the concentration of CCl4, frequency (22.5 and 1700 kHz), solution pH, temperature and tert-butyl alcohol adding on the decolorization rate of AB25 was studied. The obtained results clearly demonstrated the significant intensification of AB25 decolorization in the presence of CCl4. The enhancement effect of CCl4 increased by decreasing temperature and by increasing the CCl4 concentration. The pH has a significant influence on the bleaching of dye both in the absence and presence of CCl4. The three investigated dosimeter methods (KI oxidation, Fricke reaction and H2O2 production) well corroborate the improvement of the sonochemical effects in the presence of CCl4. The best sonochemical decolorization rate of AB25 in aqueous solution both in the absence and presence of CCl4 is observed to occur at 1700 kHz compared to 22.5 kHz. The sonochemical oxidation of CCl4 generates oxidizing species in the liquid phase that are highly beneficial for oxidation of hydrophilic and non-volatile pollutant, such as dyes, because they are less susceptible to free radical attack due to lower stability of the generated free radicals.  相似文献   

13.
本文以Pt_(10)团簇作为催化剂模型,采用密度泛函理论(DFT)中的B3LYP方法,在6-31+G(d)(Pt采用贗势基组Lanl2dz)基组水平上,探讨了Pt_(10)团簇催化肉桂醛选择性加氢反应的微观反应历程.研究结果表明,Pt_(10)团簇催化肉桂醛选择性加氢反应可生成3种不同的产物,分别是3-苯基丙醛(P1)、3-苯基丙烯醇(P2)和肉桂醇(P3),每种产物分别通过两条不同的反应通道而得到.Pt_(10)团簇催化有利于肉桂醛分子中C=O键活化加氢.这点与实验结果一致.  相似文献   

14.
本文开发了一种新型的用生物质淀粉保护的金纳米颗粒作为催化剂,选择性氧化醛基得到羧酸的方法. 在4-羟甲基苯甲醛的催化氧化中,金纳米颗粒对醛基表现出了压倒性的选择性,而醇羟基则保持不变. 该非均相催化体系由可溶解的催化剂和不溶解的底物构成. 金催化剂的制备、储存、和使用都在水相中. 反应条件优化之后,双氧水被证明是最佳的氧化剂,可以得到100%转化率. 此外,在不同官能团取代的醛衍生物中,金纳米颗粒也表现出了很好的普适性. 反应结束之后,有机组分被有机溶剂萃取,而金颗粒被保留在水中通过分液分离以回收使用.  相似文献   

15.
The selective hydrogenation of 2-methyl-3-butyn-2-ol (MBY) was performed in the presence of Lindlar catalyst, comparing conventional stirring with sonication at different frequencies of 40, 380 and 850 kHz. Under conventional stirring, the reaction rates were limited by intrinsic kinetics, while in the case of sonication, the reaction rates were 50–90% slower. However, the apparent reaction rates were found to be significantly frequency dependent with the highest rate observed at 40 kHz. The original and the recovered catalysts after the hydrogenation reaction were compared using bulk elemental analysis, powder X-ray diffraction and scanning and transmission electron microscopy coupled with energy-dispersive X-ray analysis. The studies showed that sonication led to the frequency-dependent fracturing of polycrystalline support particles with the highest impact caused by 40 kHz sonication, while monocrystals were undamaged. In contrast, the leaching of Pd/Pb particles did not depend on the frequency, which suggests that sonication removed only loosely-bound catalyst particles.  相似文献   

16.
《Ultrasonics sonochemistry》2014,21(6):1988-1993
Even though much knowledge on acoustic cavitation and its application has been accumulated over the past decades, further research is still required to develop industrial uses of acoustic cavitation. It is because the available information is mainly based on small-scale sonoreactors and the design and optimization of sonoreactors for large-scale applications have not been widely studied. In this study, the effects of liquid height/volume, initial concentration of the reactant and input acoustic power on sonochemical oxidation reactions including iodide ion oxidation, As(III) oxidation, and hydrogen peroxide generation were investigated using a 291 kHz sonoreactor with various liquid height/volumes (50, 100, 200, 300, 500, and 1000 mL) and input powers (23, 40, and 82 W). As the liquid height/volume and the input power changed, the power density varied from 23 to 1640 W/L and the maximum cavitation yields of triiodide ion for 23, 40, and 82 W were observed at 0.05, 0.1, and 0.2/0.3 L, respectively. It was found that low power was more effective for the small volume and the large volume required high power level and the moderate power density, approximately 400 W/L, was suggested for the sonochemical oxidation of iodide ion in the 291 kHz sonoreactor in this study. Similar results were observed in the generation of hydrogen peroxide and the sonochemical oxidation of As(III) to As(V). It was also revealed that KI dosimetry could be applicable for the estimation of the sonochemical reactions of non-volatile compounds such as As(III).  相似文献   

17.
The current work deals with understanding the fundamental aspects of intensified recovery of lactose from paneer (cottage cheese) whey using the anti-solvent induced sonocrystallization. Ultrasonic horn (22 kHz) with varying power levels over the range of 40–120 W has been used for initial experiments at 100% duty cycle and two different levels of ultrasonic exposure time as 10 min and 20 min. Similar experiments were also performed using ultrasonic bath for the same time of exposure but with at two ultrasonic frequencies (22 kHz and 33 kHz). It was observed that the lactose recovery as well as purity increased with an increase in ultrasonic power at 100% duty cycle for the case of treatment time as 10 min whereas the lactose recovery and purity increased only till an optimum power for the 20 min treatment. In the case of ultrasonic bath, lactose purity increased with an increase in the ultrasonic frequency from 22 kHz to 33 kHz though the lactose recovery marginally decreased. Overall, it was observed that the maximum lactose recovery was ∼98% obtained using ultrasonic horn while the maximum lactose purity was ∼97%. It was also observed that maximum lactose recovery was ∼94% for the case of ultrasonic bath while the maximum lactose purity was ∼92%. The work has enabled to understand the optimized application of ultrasound so as to maximize both the lactose yield and purity during the recovery from whey.  相似文献   

18.
Harmful algal blooms negatively impact ecosystems and threaten drinking water sources. One potential method to effectively counteract algal blooms is ultrasonication. However, ultrasonication can easily lead to the release of intracellular organic matter (IOM). The purpose of this study was to investigate the relationship between the destruction of algal cells and IOM release at different ultrasound frequencies. Microcystis aeruginosa cells were ultrasonicated at 20 kHz with an intensity of 0.038 W/mL, 740 kHz with an intensity of 0.113 W/mL, and 1120 kHz with an intensity of 0.108 W/mL. The IOM release was detected by fluorescence spectroscopy in addition to the more commonly used haemocytometry and optical density. After ultrasonication for 15 min, the removal rate of algal cells reached 10.5% at 20 kHz, 9.46% at 740 kHz, and 35.4% at 1120 kHz. The 20 kHz and 740 kHz ultrasound caused local damage to algal cells and then disrupted them, whereas the 1120 kHz ultrasound directly disrupted most algal cells. The extracellular organic matter (EOM), which was increased by ultrasonication, mainly consisted of protein-like compounds, chlorophyll, and a small amount of humic-like substances. Gas vacuoles had been destructed before the cells were broken, as indicated by the decrease of cell size and the wrinkles on the cell surface. Moreover, the removal of algae cells while upholding integrity is more conducive to the safety of the water environment.  相似文献   

19.
To improve the soybean protein content (SPC), flavor and quality of soymilk, the effects of dual-frequency ultrasound at different angles (40 + 20 kHz 0°, 40 + 20 kHz 30°, 40 + 20 kHz 45°) on physicochemical properties and soybean protein (SP) structure of raw soymilk were mainly studied and compared with the conventional single-frequency (40 kHz, 20 kHz) ultrasound. Furthermore, the intensity of the ultrasonic field in real-time was monitored via the oscilloscope and spectrum analyzer. The results showed that 40 + 20 kHz 45° treatment significantly increased SPC. The ultrasonic field intensity of 40 + 20 kHz 0° treatment was the largest (8.727 × 104 W/m2) and its distribution was the most uniform. The emulsifying stability of SP reached the peak value (233.80 min), and SP also had the largest particle size and excellent thermal stability. The protein solubility of 40 + 20 kHz 30° treatment attained peak value of 87.09%. 20 kHz treatment significantly affected the flavor of okara. The whiteness and brightness of raw soymilk treated with 40 kHz were the highest and the system was stable. Hence, the action mode of ultrasonic technology can be deeply explored and the feasibility for improving the quality of soymilk can be achieved.  相似文献   

20.
This article presents the evolution of the photo-luminescence (PL) of silicon quantum dots (QDs) with an average diameter of 5–6 nm dispersed in alcohol under different conditions. Two samples were considered after alcohol dispersion: freshly synthesized (kept in air for 2 days) QDs which do not exhibit luminescence and air-aged (kept in air for 2 years) QDs exhibiting red-IR luminescence. Experiments performed with addition of a small volume of water, followed by heating for different times showed that the oxidation occurs gradually until transforming totally the initial material in SiO2. The oxidation process does not enable the appearance of PL from the Si core for dispersed non-aged powders, while it results in a blue shift of the PL maximum intensity for the aged ones. The results obtained after UV illumination clearly indicate an effect of the UV irradiation on the luminescence of QDs dispersed in aqueous environment, and the treatments with acidic water lead to the conclusion of a possible enhancement of the PL by hydrogen passivation of the non-radiative defects. This result should be taken into account for post-production treatments and applications, more particularly, considering a controlled and safe use of luminescent Si QDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号