首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 181 毫秒
1.
Al-Si alloy samples with a silicon content of 8–15 wt % are grown by the Stepanov method at a solidification rate of 102 and 103 μm/s. The microstructure of the samples is examined, and the stress-strain curves obtained during tension and bending at a strain rate of 10?4 s?1 are studied. The behavior of Young’s modulus, the modulus defect, and ultrasonic attenuation is investigated. The silicon content in a eutectic structure is found to increase with the solidification rate. The yield strength and the ultimate tensile strength increase with the silicon content up to a eutectic composition. The quality index (which characterizes the strength and plasticity of the material) of Stepanov-grown samples is higher than the quality indices of traditional modified ingots.  相似文献   

2.
Aluminum-silicon alloys (from 8 to 25 wt % Si) have been prepared by directional crystallization of shaped samples by the Stepanov growth at a solidification rate of 103 μm s?1. The dependences of the microhardness, Young’s modulus, internal friction, yield stress, and ultimate tensile stress of the alloys on the silicon content have been studied. It has been shown that the ultimate tensile stress has a maximum, and the yield stress has a kink at 15 wt % Si; the composition corresponds to the eutectic composition at the solidification rate used. The silicon content in the eutectics increases with an increase in the solidification rate. The increase in the ultimate tensile stress is explained by an increase in the volume fraction of the more strength fine-crystalline structure of the eutectics as a result of the decrease in the volume fraction of more plastic dendrites of the primary crystals of the α-Al solid solution. The decrease in the ultimate tensile stress of the hypereutectic alloy is determined by the increase in the volume fraction of brittle primary silicon crystals of various shapes.  相似文献   

3.
ABSTRACT

The thermal compression behaviour of Al–Zn–Mg alloy was studied on a thermal simulator machine at the temperature range of 380–540°C and strain rate range of 0.01–10?s?1. The constitutive equation and 3D processing map of the alloys were established. The microstructure characteristics of the alloy were studied by metallographic observation, electron back-scatter diffraction (EBSD) analysis and transmission electron microscopy (TEM) microstructure analysis. The results show that the peak stress of high-temperature deformation of alloy decreases with the increase of deformation temperature and increases with the increase of strain rate. The dynamic recovery of the alloy occurs at the temperature range of 380–460°C and the strain rate range of 0.01–0.1?s?1. The dynamic recrystallization of the alloy occurs at the temperature range of 460–500°C and the strain rate range of 0.01–0.1?s?1. The alloy maintains fine and uniform recrystallized grains at a temperature range of 460–480°C and a strain rate range of 0.01–0.1?s?1, which is suitable for hot working.  相似文献   

4.
Samples of Ti–6?wt%?Al–4?wt%?V and Timet 550 (Ti–4?wt%?Al–4?wt%?Mo–2?wt%?Sn–0.5?wt%?Si) have been subjected to strain rates between 10?1 and 103?s?1and detailed examination of the dislocation structure in the α grains has been carried out using transmission electron microscopy (TEM). For samples deformed to a strain of 0.1 at 10?1?s?1, detailed analysis of the defects can be carried out using all diffracting vectors and the presence of (c +?a) dislocations and a dislocations thus confirmed. In contrast, for samples strained to the same strain of 0.1 but at 5?s?1, it is not possible to obtain images of dislocations when using any diffracting vectors other than 0002. Thus the presence of dislocations which have a Burgers vector containing a c component can be confirmed in the samples strained at 5?s?1 but the presence of a-component dislocations can only be inferred from TEM of these samples because of the difficulty of obtaining images with diffracting vectors other than 0002. Limited observations on samples strained at 103?s?1 show that similar difficulties are found in imaging dislocations as are found in samples deformed at 5?s?1 but at this strain rate, the highest used, the difficulties are reduced since images can be obtained in some grains using diffracting vectors other than 0002. These results are discussed in terms of the nature of damage as a function of strain rate and the factors that influence contrast from dislocations in crystals.  相似文献   

5.
Samples of Ti–6?wt%?Al–4?wt%?V and Timet 550 (Ti–4?wt%?Al–4?wt%?Mo–2?wt%?Sn–0.5?wt%?Si?wt%), which have been deformed at a strain rate of 5?s?1, were annealed after thinning so that the visibility of dislocations in transmission electron microscopy could be compared before and after annealing. It has been found that imaging with g?=?0002 produces clear images of dislocations before and after annealing, but that imaging with other diffracting vectors gives reasonable dislocation images only after annealing to at least 700°C. The sharpness of Kikuchi lines in diffraction patterns obtained from fully annealed samples, deformed at 10?1 and 5?s?1, has been examined. The lines are sharp for all planes in the fully annealed samples, but become more diffuse in samples deformed at 10?1?s?1. However, in samples deformed at 5?s?1 the Kikuchi lines from (0002) planes are sharp but the lines from all other planes are diffuse. These observations are interpreted in terms of the presence of a high density of defects, which do not distort the elastically strong (0002) planes as significantly as they distort all other planes. These observations are discussed with respect to the recent claim that a particular Ti alloy deforms by a mechanism that does not involve dislocations.  相似文献   

6.
This paper presents the results of measurements of the dynamic elastic limit and spall strength under shock wave loading of specimens of the magnesium alloy Ma2-1 with a thickness ranging from 0.25 to 10 mm at normal and elevated (to 550°C) temperatures. From the results of measurements of the decay of the elastic precursor of a shock compression wave, it has been found that the plastic strain rate behind the front of the elastic precursor decreases from 2 × 105 s?1 at a distance of 0.25 mm to 103 s?1 at a distance of 10 mm. The plastic strain rate in a shock wave is one order of magnitude higher than that in the elastic precursor at the same value of the shear stress. The spall strength of the alloy decreases as the solidus temperature is approached.  相似文献   

7.
We report on the stress–density and rate-dependent response for Ta, ramp compressed to 330?GPa with strain rates up to 5?×?108?s?1. We employ temporally shaped laser drives to compress Ta stepped foils over several to tens of nanoseconds. Lagrangian wave-profile analysis reveals a stress–density relationship which falls below the Hugoniot, above the hydrostat, and is consistent with ramp-compression experiments at lower strain rates. We also report on the peak elastic stress prior to plastic deformation as a function of strain rate for laser-driven ramp and shock-compression data spanning the 1–50?×?107?s?1 strain-rate range. When combined with previously published lower strain data (101–107?s?1), we observe a change in rate dependence, suggesting a transition from thermally activated to defect-limited (phonon drag) dislocation motion occurring at a strain rate of about 105?s?1.  相似文献   

8.
The precipitation of silicon atoms in aluminum in an Al-Si alloy has been studied using differential scanning calorimetry. The alloys containing 8, 13, and 15 wt % silicon were obtained by directional solidification of a ribbon pulled from the melt through a shaper by the Stepanov method at a rate of about 103 μm/s. From the characteristics of the exothermic effects observed in the temperature range 430–650 K, it has been found that the precipitation process leading to the formation of the Guinier-Preston zones occurs with the effective activation energy of 75 kJ/mol, and its intensity decreases with increasing silicon content in the alloy from 8 wt % to the eutectic content. The effect correlates with a decrease in the volume fraction of dendrites of the primary α-Al crystals in the alloy. It can be assumed that the precipitation occurs in the dendrite primary crystals of the solid solution. Based on this assumption, it has been concluded that, during directional solidification of an aluminum-silicon alloy at a rate of 103 μm/s, the metastable solid solution of silicon in aluminum, in which silicon atoms of the metallic lattice are transformed into clusters with covalent bonding forces, is formed during the dendrite growth of the primary crystals.  相似文献   

9.
A series of cadmium — silver alloy single crystals containing up to 0·25 at % Ag were deformed in tension at a strain rate of 1×10?4s?1. The tensile tests were carried out at temperatures between 77 and 199 K. Stress relaxation experiments were performed to investigate the concentration dependence of the activation volume. Over the temperature range investigated, the activation volume at beginning of deformation decreases proportionally toc ?2/3 wherec is the atomic concentration of silver as solute. The results are discussed on the basis of the interaction between dislocations and solute atoms.  相似文献   

10.
Abstract

The effect of thermomechanical processing on microstructure evolution and room temperature flow behaviour of polycrystalline magnesium in compression at strain rates of ~10?2 and ~103 s?1 was investigated. Different initial microstructures were produced by optimising rolling and annealing cycles. Prior to annealing for 1 h at 350 °C, Mg samples were processed by two different treatments such as (i) hot rolling at 350 °C and (ii) hot rolling at 350 °C plus cold rolling at room temperature. Introduction of cold working step led to an increased fraction of hard oriented grains with a marginal grain size difference in post-annealed samples. A profound effect of thermomechanical processing on strain hardening rate as well as rate-sensitive flow behaviour of Mg was observed. The influence of prior processing history and strain rate on flow behaviour of Mg was clearly reflected in terms of texture strengthening/weakening phenomena and formation of microstructural deformation bands.  相似文献   

11.
利用MTS材料试验机和分离式Hopkinson压杆(SHPB)实验装置对非退火状态Ta-10W合金进行了准静态和动态压缩实验,给出了材料的静态压缩屈服强度和应变率在700~3 100 s-1范围内的动态压缩应力-应变曲线,并获得了不同应变率下材料的动态屈服强度。通过对实验结果的分析可以发现,非退火状态Ta-10W合金具有较好的韧性,在所进行的实验中试件表面均未出现可见裂纹;试件材料具有较高的静、动态屈服强度,静态屈服强度达到930 MPa,动态屈服强度在1 GPa以上,在所进行的700~3 100 s-1应变率范围内,材料的动态屈服强度随应变率的增加略有提高。  相似文献   

12.
Niko Rozman  Jožef Medved 《哲学杂志》2013,93(33):4230-4246
This study investigates the effects of alloying elements on the microstructural evolution of Al-rich Al–Mn–Cu–(Be) alloys during solidification, and subsequent heating and annealing. The samples were characterised using scanning electron microscopy, energy dispersive X-ray spectroscopy, synchrotron X-ray diffraction, time-of-flight secondary-ion mass spectroscopy, and differential scanning calorimetry. In the ternary Al94Mn3Cu3 (at%) alloy, the phases formed during slower cooling (≈1?K?s?1) can be predicted by the known Al–Mn–Cu phase diagram. The addition of Be prevented the formation of Al6Mn, decreased the fraction of τ1-Al29Mn6Cu4, and increased the fraction of Al4Mn. During faster cooling (≈1000?K?s?1), Al4Mn predominantly formed in the ternary alloy, whereas, in the quaternary alloys, the icosahedral quasicrystalline phase dominated. Further heating and annealing of the alloys caused an increase in the volume fractions of τ1 in all alloys and Be4Al (Mn,Cu) in quaternary alloys, while fractions of all other intermetallic phases decreased. Solidification with a moderate cooling rate (≈1000?K?s?1) caused considerable strengthening, which was reduced by annealing for up to 25% in the quaternary alloys, while hardness remained almost the same in the ternary alloy.  相似文献   

13.
The structure, Young’s modulus defect, and internal friction in aluminum-germanium alloys have been studied under conditions of longitudinal elastic vibrations with a strain amplitude in the range of 10?6?3 × 10?4 at frequencies about 100 kHz. The ribbon-shaped samples of the alloys with the germanium content from 35 to 64 wt % have been produced by drawing from the melt by the Stepanov method at a rate of 0.1 mm/s. It has been shown that the dependences of the Young’s modulus defect, logarithmic decrement, and vibration stress amplitude on the germanium content in the alloy at a constant strain amplitude have an extremum at 53 wt % Ge. This composition corresponds to the eutectic composition. The dependences of the Young’s modulus defect, the decrement, and vibration stress amplitude at a constant microstrain amplitude have been explained by the vibrational displacements of dislocations, which depend on the alloy structure.  相似文献   

14.
ABSTRACT

Type 316L austenitic stainless steel was severely plastically deformed at room temperature using linear plane-strain machining in a single pass that imparted shear strains up to 2.2 at strain rates up to 2?×?103 s?1. The resulting microstructures exhibited significant grain size refinement and improved mechanical strength where geometric dynamic recrystallization was identified as the primary microstructural recrystallization mechanism active at high strain rates. This mechanism is rarely observed in low to medium stacking fault energy materials. The critical stress required for twin initiation is raised by the combined effects of refined grain size and the increase in stacking fault energy due to the adiabatic heating of the chip, thus permitting geometric dynamic recrystallization. The suppression of martensite formation was observed and is correlated to the significant adiabatic heating and mechanical stabilisation of the austenitic stainless steel. A gradient of the amount of strain induced martensite formed from the surface towards the interior of the chip. As the strain rate is increased from 4?×?102 s?1–2?×?103 s?1, a grain morphology change was observed from a population of grains with a high fraction of irregular shaped grains to one dominated by elongated grain shapes with a microstructure characterised by an enhanced density of intragranular sub-cell structure, serrated grain boundaries, and no observable twins. As strain rates were increased, the combination of reduction in strain induced martensite and non-uniform intragranular strain led to grain softening where a Hall-Petch relationship was observed with a negative strengthening coefficient of ?0.08?MPa m1/2.  相似文献   

15.
C. Papandrea 《哲学杂志》2013,93(10):1601-1618
The α???γ transformation in nominally high purity Fe is shown to occur with a stepped peak in differential thermal analysis on both heating and cooling at rates between 0.5?K?min?1 and 10?K?min?1. The composite peaks mark changes in the transformation rate. To endorse the findings, the instrumental output has been thoroughly analyzed providing evaluations of time lags, suggestions for calibration and for the use of the derivative of the peak. The change in rate occurred in all samples irrespective of their grain size (average values from 91?µm to 1100?µm). The rate of movement of the interface in the α???γ transformation is estimated between 4?×?10?5?m?s?1 and 3?×?10?6?m?s?1. The present results extend previous dilatometric work in which the rate variation was detected only for large grain size and low undercooling. Possible reasons for the variation in rate are outlined: local development of strain in the austenite due to lattice misfit with respect of the growing ferrite, formation of a ragged microstructure and pinning of the boundaries by impurity.  相似文献   

16.
Processes of ionization of shallow acceptor centers (ACs) in silicon are studied. In crystalline silicon samples with phosphorus (1.6×1013, 2.7×1013, and 2.3×1015cm?3) and boron (1.3×1015cm?3) impurities, μAl impurity atoms were produced by implantation of negative muons. It is found that thermal ionization is the main mechanism for ionizing the Al acceptor impurity in both p-type and n-type silicon with an impurity concentration of ?1015cm?3 at T>45 K. The thermal ionization rate of Al ACs in Si varies from ~105 to ~106s?1 in the temperature range 45–55 K.  相似文献   

17.
Grain refinement taking place in a coarse-grained 7475 Al alloy was studied in multidirectional compression at 490°C and at a strain rate of 3?×?10?4?s?1. The integrated flow curve displays significant work softening just after yielding and an apparent steady-state plastic flow at high strains. The structural changes are characterized by the development of deformation or microshear bands in coarse-grain interiors, followed by homogeneous evolution of new grains at high strains. The new grains are considered to be developed by a kind of continuous reaction through grain fragmentation that is similar to continuous dynamic recrystallization (cDRX). The mechanism of fine grain production and the factors controlling grain refinement during hot multidirectional deformation are discussed in detail.  相似文献   

18.
The effect of preliminary strain hardening of VT1-0 titanium and a Ti-6 wt % Al-4 wt % V alloy on their mechanical properties under quasi-static and high-rate (τ;105 s?1) loading is studied. Preliminary hardening is accomplished using equal-channel angular pressing (which results in a significant decrease in the grain size and a twofold increase in the quasi-static yield strength) and shock waves. High-rate deformation is attained via shock-wave loading of samples. The experimental results show that structural defects weaken the dependence of the yield strength on the strain rate. The difference in the rate dependences can be so high that the effect of these defects on the flow stress can change sign when going from quasi-static to high-rate loading.  相似文献   

19.
This paper presents an experimental investigation on the strain rate sensitivity of Dual Phase steel 1200 (DP1200) and Dual Phase steel 1400 (DP1400) under uni-axial tensile loads in the strain rate range from 0.001?s?1 to 600?s?1. These materials are advanced high strength steels (AHSS) having high strength, high capacity to dissipate crash energy and high formability. Flat sheet specimens of the materials having gauge length 10?mm, width 4?mm and thickness 2?mm (DP1200) and 1.25?mm (DP1400), are tested at room temperature (20°C) on electromechanical universal testing machine to obtain their stress-strain relation under quasi-static condition (0.001?s?1), and on Hydro-Pneumatic machine and modified Hopkinson bar to study their mechanical behavior at medium (3?s?1, and 18?s?1) and high strain rates (200?s?1, 400?s?1, and 600?s?1) respectively. Tests under quasi-static condition are performed at high temperature (200°C) also, and found that tensile flow stress is a increasing function of temperature. The stress-strain data has been analysed to determine the material parameters of the Cowper-Symonds and the Johnson-Cook models. A simple modification of the Johnson-Cook model has been proposed in order to obtain a better fit of tests at high temperatures. Finally, the fractographs of the broken specimens are taken by scanning electron microscope (SEM) to understand the fracture mechanism of these advanced high strength steels at different strain rates.  相似文献   

20.
Dynamic deformation of copper single crystals, especially of fatigued copper single crystals with different orientations, was conducted on a split-Hopkinson pressure bar apparatus. The strain rates were in the range 2???9?×?103?s?1. After dynamic deformation, the adiabatic shear bands (ASBs) were examined in a light microscope and SEM. The width and spacing of ASBs formed under different strain rates in a fatigued copper single crystal were measured and the spacing of ASBs is one-order of magnitude smaller than the theoretical predictions. The possible reasons for the discrepancy were discussed. The critical strains for the ASB formation in four different orientated single crystals at stain rate of about 4?×?103?s?1 were determined by examining the post-deformation specimens and dynamic stress–strain curves. It is clearly indicated that the critical strains for the ASB formation are orientation-dependent in copper single crystals. A simple microscopic mechanism for ASB formation in fatigued single crystals was proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号