首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
对将双射流引入高压涡轮导向器叶栅进行了二维数值研究。在叶栅出口为高亚声速和超声速条件下,对三种具有不同曲率尾缘的环量控制叶栅,采用在吸力面和压力面各加一股射流的双射流方式对叶栅的气动性能进行探讨。结果表明:叶栅出口气流马赫数为0.6和1.1时,采用双射流方案取得了好于单射流的出口气流角和膨胀比,但由于多加了一股射流,能量损失有所增加;马赫数为0.85时,单射流结构的环量控制涡轮叶栅气动性能已经比较好,再加入一股射流对叶栅的气动性能没有明显改善;双射流条件下,压力面射流后方存在低压区,使得在叶栅尾缘曲率较大时,吸力面射流也保持了较好的附壁效果。  相似文献   

2.
来流马赫数波动对扩压叶栅气动性能的影响   总被引:1,自引:0,他引:1  
准确地掌握来流马赫数的波动(即不确定性)对扩压叶栅的气动性能的影响对于指导压气机设计具有重要意义。采用非嵌入式混沌多项式方法,从统计学的角度评估了随机来流马赫数对扩压叶栅气动性能的影响,并着重对比分析了不同攻角和不同随机来流马赫数工况下来流马赫数的不确定性对扩压叶栅气动性能的整体影响和随之带来的气动性能的波动影响。研究结果表明,来流马赫数的不确定性的确对叶栅气动性能产生影响:来流攻角偏离设计攻角越多,叶栅的气动性能对来流马赫数的不确定性越敏感,且在叶栅通道中反应较敏感区域的范围及位置均随着攻角的变化而变化;随机来流马赫数越高,叶栅的气动性能对来流马赫数的不确定性越敏感。  相似文献   

3.
利用中国科学院工程热物理研究所和哈尔滨汽轮机厂合建的暂冲式超音速平面叶栅风洞,在详细校核进口流动均匀性、出口流动周期性及叶栅中部流动二元性的基础上,详细测试了三套超音速涡轮叶栅在设计和非设计等三个攻角状态下的气动性能及叶片表面压力分布,为超音速涡轮叶栅的后续研究积累了翔实的实验资料。  相似文献   

4.
高速高负荷压气机叶栅损失特性实验研究   总被引:1,自引:0,他引:1  
实验测量了某高速高负荷压气机叶栅两个马赫数(0.5884和0.5)下-8°、-6°、-4°、-1.69°、0°、2°、4°和8°共8个攻角的栅后流场,分析了其损失特性随着攻角的变化规律。结果表明:设计马赫数0.5884下,该叶栅低总压损失系数对应的攻角范围较小,随着攻角往两端偏离最优攻角,叶栅损失很快就急剧增加;从2°到4°攻角,流场结构发生了改变,近叶中区域也开始发生了较大的分离,而近端区的角区分离反而减小,使得总压损失未迅速增加,而是基本不变;随着攻角进一步增大到8°,发展成了全叶高的大尺度分离流动,尾迹速度亏损急剧增大,总压损失也急剧增大。  相似文献   

5.
1+1/2对转涡轮用出口超音叶栅设计与试验   总被引:2,自引:2,他引:0  
本文以1 1/2对转涡轮为背景,开展出口马赫数1.5、气流角为70°高出口马赫数涡轮叶栅设计与试验研究。研究与分析表明,尾缘厚度及尾缘附近叶表速度分布是决定上述高出口马赫数叶栅性能的关键;尾缘后约一倍叶栅出口宽度范围内,损失剧烈增加,此距离之后,总压降低趋于平缓。初步试验结果说明高出口马赫数涡轮叶栅是可行的。  相似文献   

6.
为降低跨音压气机叶尖损失,开展超音叶栅流动机理及叶型设计研究。首先考虑栅前激波损失,并引入极限特征线上的等熵马赫数和总压恢复系数,得到更准确的唯一进气角计算方法;然后将此计算方法用于超音叶型设计,给出叶型前段形状;最后结合经验和理论分析,完成叶型后段设计。研究结果表明:此设计实现三道斜激波加一道正激波组合增压;在设计点,静压比为2.27,总压比为1.99,总压损失系数为0.091(对应效率0.902);在近失速点时,正激波移至喉道处,叶栅总压损失系数最小;正激波移至叶栅出口时,正激波最强,总压损失系数最大。  相似文献   

7.
涡轮转速对无导叶对转涡轮流动特性的影响   总被引:1,自引:0,他引:1  
为了探究无导叶对转涡轮在不同涡轮转速下的流动特性,运用CFD方法对某无导叶对转涡轮模型级的流场进行了三维定常多叶片排的数值模拟.结果表明,涡轮转速的变化对无导叶对转涡轮的喉部位置基本没有影响;随涡轮转速的升高,高压动叶内的激波损失增大,低压动叶内的激波损失减小,源生于低压动叶吸力面上的激波沿吸力面向尾缘移动;对于远离设计点的非设计工况,流动分离损失及低压动叶中的激波损失构成了对转涡轮损失中的主体;涡轮转速的变化对高低压动叶出口气流角及高压动叶出口马赫数的影响作用较大;高低压涡轮出功比、对转涡轮的总功率及等熵效率均随涡轮转速的增大而增大.  相似文献   

8.
本文以某压气机平面叶栅为研究对象,采用数值计算的方法,在不同稠度条件下,分别研究仿生学前缘结状突起在零攻角和正攻角时对叶栅性能的影响。结果表明,零攻角工况时,各稠度条件下的仿生学叶栅总压损失系数都有一定的增大,性能恶化;8°正攻角工况时,波长等于9.6%c的前缘结状突起在各稠度条件下都能有效降低总压损失系数,改善叶栅性能,在设计稠度下(S=2)效果最显著,损失系数降低了约18.8%;仿生学前缘的作用机理:结状突起诱导产生的成对流向涡与通道中的分离流动相互作用,包括涡系结构之间的抵消作用和动量的输运,从而延缓分离,提高叶栅性能。  相似文献   

9.
为提高压气机串列叶栅复杂气动构型优化设计的效率,本文基于本征正交分解(POD)理论,建立了集几何外形参数化、样本空间降维、气动性能求解、降维模型构建和遗传算法寻优于一体的串列叶栅高效优化设计系统,针对叶型型面和叶片相对位置关系参数,开展了多目标优化设计工作。在7°攻角工况下,优化后的串列叶栅的静压升提高了0.53%,总压损失系数下降了9.25%,其他攻角条件下叶栅性能同样也得到了改善。与传统CFD方法相比,极大提高了优化效率,与基于Kriging代理模型相比,本文发展的优化系统由于缩小了设计变量空间,提高了优化的迭代效率,收敛耗时仅为Kriging代理模型的0.0796%。此外,基于POD方法的优化设计系统具有更高的建模精度,使串列叶栅获得了更高的静压升和更低的总压损失系数。优化后的串列叶栅节距系数增大、弯角比减小,减小了掺混损失,抑制了流动分离,改善了全攻角范围内的气动性能。  相似文献   

10.
采用角区端壁射流控制某进口马赫数为Ma=0.67的高速平面扩压叶栅流动分离。研究了射流轴向位置和角度对叶栅气动性能的影响,结果表明:通过对角区内注入能量可有效减弱流道后部的流动分离,仅采用相当于主流流量0.6%的射流气体,可使得叶栅出口总压损失系数降低10.0%。位于角区内分离起始位置处的射流控制效果最佳;随着角度的增加,射流与来流间的冲击和掺混损失增大,近叶展中部的分离流动加剧,使得流动控制效果减弱。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号