首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work reports experimental kinetic data of solvent-free glycerolysis of olive oil using a commercial immobilized lipase (Novozym 435) under the influence of ultrasound irradiation. The experiments were performed in a mechanically stirred reactor under ultrasound irradiation, evaluating the effects of temperature (50-70 °C), enzyme concentration (2.5-10 wt%) and glycerol to oil molar ratio (0.8:1-3:1). Results show that ultrasound-assisted lipase-catalyzed glycerolysis might be a potential alternative route to conventional methods, as high contents of reaction products, especially monoglycerides, were achieved at mild irradiation power supply (∼130 W) and temperature, in a relatively short reaction time (2 h) and low enzyme content (7.5 wt%). To completeness, two simplified kinetic modeling approaches, based on the ordered-sequential bi bi mechanism and reaction stoichiometry, were employed to represent the experimental data, thus allowing a better understanding of the reaction kinetics.  相似文献   

2.
The present work illustrates the transesterification of glycerol to glycerol carbonate (GlyC) from dimethyl carbonate (DMC) using commercial immobilized lipase (Novozym 435) under ultrasonic irradiation. The experiments were performed in a batch reactor placed in an ultrasonic water bath using a sequence of experimental protocol to evaluate the effects of temperature, molar ratios of substrates, enzyme loading, duty cycle and ultrasound power on the conversion of glycerol to GlyC. It has been found that ultrasound-assisted lipase-catalyzed transesterification of glycerol would be a potential alternative to conventional alkali-catalyzed method, as high conversion (99.75%) was obtained at mild operating conditions: molar ratio of DMC to glycerol 3:1, catalyst amount of 13% (w/w), lower power input (100 W), duty cycle 50% and temperature (60 °C) in a relatively short reaction time (4 h) using Novozym 435 as catalyst. Ultrasound reduces the reaction time up to 4 h as compared to conventional stirring method (14 h) catalyzed by Novozym 435. The repeated use of the catalyst under the optimum experimental condition resulted in decay in both enzyme activity and product conversion.  相似文献   

3.
This work reports the production of biodiesel with waste cooking oil and dimethyl carbonate in solvent free system through transesterification by immobilized enzyme (Novozym 435) under the influence of ultrasound irradiation. The experiments were conducted in an ultrasonic water bath under three different conditions i.e. ultrasonic irradiation (UI) without stirring, UI coupled with stirring and only stirring to compare their overall effects on fatty acid methyl esters (FAME) conversion. As compared with the conventional stirring method, where FAME conversion was 38.69% at 4 h, the UI without stirring significantly enhanced the conversion of enzymatic transesterification to 57.68% for the same reaction time. However the reaction rate was further increased under the condition of ultrasonication coupled with stirring and resulted into higher conversion of 86.61% for the same reaction time. Effects of reaction parameters, such as temperature, ratio of DMC/oil, speed of agitation and enzyme loading on the conversion were investigated. Furthermore, repeated use of Novozym 435 showed gradual decline in both conversion as well as enzyme activity.  相似文献   

4.
The present work demonstrates the hydrolysis of waste cooking oil (WCO) under solvent free condition using commercial available immobilized lipase (Novozyme 435) under the influence of ultrasound irradiation. The process parameters were optimized using a sequence of experimental protocol to evaluate the effects of temperature, molar ratios of substrates, enzyme loading, duty cycle and ultrasound intensity. It has been observed that ultrasound-assisted lipase-catalyzed hydrolysis of WCO would be a promising alternative for conventional methods. A maximum conversion of 75.19% was obtained at mild operating parameters: molar ratio of oil to water (buffer pH 7) 3:1, catalyst loading of 1.25% (w/w), lower ultrasound power 100 W (ultrasound intensity – 7356.68 W m−2), duty cycle 50% and temperature (50 °C) in a relatively short reaction time (2 h). The activation energy and thermodynamic study shows that the hydrolysis reaction is more feasible when ultrasound is combined with mechanical agitation as compared with the ultrasound alone and simple conventional stirring technique. Application of ultrasound considerably reduced the reaction time as compared to conventional reaction. The successive use of the catalyst for repetitive cycles under the optimum experimental conditions resulted in a loss of enzymatic activity and also minimized the product conversion.  相似文献   

5.
Microwave and ultrasound have been demonstrated to be outstanding process intensification techniques for transesterification of oil. According to their mechanisms, simultaneous effects can surely bring about better enhancement than sole microwave or ultrasound. Therefore, this study aimed to investigate the important factors and their suitable levels in the KOH-catalyzed transesterification of soybean oil with methanol by using synergistic assistance of microwave-ultrasound (CAMU). The feasibility of application of CAMU in transesterification of oil was demonstrated. When the dosage of methanol, soybean oil and KOH were 15.4 g, 34.7 g (with methanol-to-oil molar ratio of 12:1) and 1 g, respectively, and the microwave power, ultrasonic power, ultrasonic mode, reaction temperature and reaction time were 700 W, 800 W, 1:0, 65 °C and 6 min, respectively, the transesterification reached 98.0% of yield, being the highest yield among all the results obtained; while by using 600 W of microwave plus stirring instead of CAMU, only 57.4% of yield could be obtained. Compared with other reaction techniques, the transesterification by applying novel CAMU was found to have remarkable advantages. Furthermore, by monitoring the variation of real-time temperature and microwave power during transesterification reactions with different microwave operation time and by taking comparison of the corresponding yield, it was demonstrated that the main reason for the acceleration of microwave-assisted transesterification was the polarization and further activation of reactants caused by microwave irradiation, but not the factor of fast heating.  相似文献   

6.
Investigation into newer routes of biodiesel synthesis is a key research area especially due to the fluctuations in the conventional fuel prices and the environmental advantages of biodiesel. The present work illustrates the use of sonochemical reactors for the synthesis of biodiesel from waste cooking oil. Transesterification of used frying oil with methanol, in the presence of potassium hydroxide as a catalyst has been investigated using low frequency ultrasonic reactor (20 kHz). Effect of different operating parameters such as alcohol–oil molar ratio, catalyst concentration, temperature, power, pulse and horn position on the extent of conversion of oil have been investigated. The optimum conditions for the transesterification process have been obtained as molar ratio of alcohol to oil as 6:1, catalyst concentration of 1 wt.%, temperature as 45 °C and ultrasound power as 200 W with an irradiation time of 40 min. The efficacy of using ultrasound has been compared with the conventional stirring approach based on the use of a six blade turbine with diameter of 1.5 cm operating at 1000 rpm. Also the purification aspects of the final product have been investigated.  相似文献   

7.
Biodiesel production via esterification/transesterification reactions can be catalyzed by homogenous or heterogeneous catalysts. Development of heterogeneous catalysts for biodiesel production is highly advantageous due to the ease of product purification and of catalyst recyclability. In this current work, a novel acidic [DABCODBS][CF3SO3]2 dicationic ionic liquid (DIL) was used as heterogeneous catalyst to produce biodiesel using oleic acid as model oil. The esterification was conducted under ultrasonic irradiation (20 kHz) using a 14 mm ultrasonic horn transducer operated at various duty cycles. It was observed that the duty cycle, amplitude, methanol to oil molar ratio, catalyst amount and reaction temperature were the major factors that greatly impact the necessary reaction time to lead to a high yield of biodiesel. The reaction conditions were optimized with the aid of Response Surface Methodology (RSM) designed according to the Quadratic model of the Box Behnken method. The optimum conditions were found to be at catalyst amount of 0.64 mol%, methanol to oil ratio of 14.3:1, temperature of 59 °C, reaction time of 83 min and amplitude of 60% in continuous mode. The results showed that the oleic acid was successfully converted into esters with conversion value of 93.20% together with significant reduction of reaction time from 7 h (using mechanical stirring) to 83 min (using ultrasonication). The results also showed that the acidic DIL catalyst we designed purposely was efficient to catalyze the ultrasonic-assisted esterification yielding high conversion of oleic acid to methyl oleate on short times. The DIL was also recycled and reused for at least five times without significant reduction in performance. Overall, the procedure offers advantages including short reaction time, good yield, operational simplicity and environmentally benign characteristics.  相似文献   

8.
Present work deals with the ultrasound-assisted biodiesel production from low cost, substantial acid value kusum (Schleichera triguga) oil using a two-step method of esterification in presence of acid (H2SO4) catalyst followed by transesterification using a basic heterogeneous barium hydroxide (Ba(OH)2) catalyst. The initial acid value of kusum oil was reduced from 21.65 to 0.84 mg of KOH/g of oil, by acid catalyzed esterification with 4:1 methanol to oil molar ratio, catalyst concentration 1% (v/v), ultrasonic irradiation time 20 min at 40 °C. Then, Ba(OH)2 concentration of 3% (w/w), methanol to oil molar ratio of 9:1, ultrasonic irradiation time of 80 min, and temperature of 50 °C was found to be the optimum conditions for transesterification step and triglyceride conversion of 96.8% (wt) was achieved. This paper also examined the kinetics as well as the evaluation of thermodynamic parameters for both esterification and transesterification reactions. The lower value of activation energy and higher values of kinetic constants indicated a fast rate of reaction, which could be attributed to the physical effect of emulsification, in which the microturbulence generated due to radial motion of bubbles, creates an intimate mixing of the immiscible reactants causing the increase in the interfacial area, giving faster reaction kinetics. The positive values of Gibbs-free energy (ΔG), enthalpy (ΔH) and negative value of entropy (ΔS) revealed that both the esterification and transesterification were non-spontaneous, endothermic and endergonic reactions. Therefore, the present work has not only established the escalation obtained due to ultrasonication but also exemplified the two-step approach for synthesis of biodiesel from non-edible kusum oil based on the use of heterogeneous catalyst for the transesterification step.  相似文献   

9.
李翠芹  朱莎娜  黄勋 《光谱实验室》2011,28(6):2995-2998
为获得最佳条件,在单因素试验的基础上,采用正交试验法对大豆油碱催化酯交换法制各生物柴油的工艺参数进行了优化试验,结果表明,制取生物柴油的最佳工艺参数是:醇油摩尔比6:1,催化剂用量为油量的0.8%,反应温度为45℃,反应时间60m in,并且在最优工艺参数下进行了验证试验,得到生物柴油的转化率为97.05%。气相色谱分析结果表明,脂肪酸甲酯含量很高。  相似文献   

10.
Biodiesel was obtained by transesterification of Jatropha curcus oil with anhydrous methanol, ethanol, and various mixtures of methanol/ethanol system. The present research work ultrasonic assisted transesterification of J. curcus oil was carried out in the presence of various mixtures of methanol/ethanol system and potassium hydroxide (KOH) as a catalyst, keeping the molar ratio of oil to alcohol 1:6. The methodology allows for the reaction to be run under atmospheric conditions. The ethanomethanolysis and ultrasonic mixing promote the rate of transesterification reaction due to the better solubility of oil with ethanol in reaction mixture and obtained methyl esters as well as ethyl esters.  相似文献   

11.
Two activated carbons treated with mineral acids (HNO3 and sulfonitric mixture) have been tested as acid catalysts in the epoxides (1,2-epoxyhexane and styrene oxide) ring-opening reaction with 1-butanol under microwave (MW) irradiation. The mayor obtained product is that resulting of the alcohol addition to the most substituted carbon in the epoxide ring. The most active catalyst is that treated with sulfonitric mixture. The use of a MW oven allows achieving to the complete conversion of styrene oxide in only 2 min.  相似文献   

12.
Phosphotungstic acid (HPW) supported on activated carbon (AC) was applied to catalyze deep oxidation desulfurization of fuel oil with the assist of ultrasound. The sulfur-conversion rate was evaluated by measuring the concentration of dibenzothiophene (DBT) in n-octane before and after the oxidation. Supporting HPW on AC has been verified to play a positive role in UAOD process by a series of contrast tests, where only HPW, AC or a mixture of free HPW and AC was used. The influences of catalyst dose, ultrasound power, reaction temperature, H2O2:oil volume ratio and the reuse of catalyst on the catalytic oxidation desulfurization kinetics were investigated. The DBT conversion rate of the reaction catalyzed by supported HPW under ultrasound irradiation was higher than the summation of the reactions with HPW only and AC only as catalyst. With the increase of loading amount of HPW on AC, ultrasound power, H2O2:oil volume ratio and reaction temperature, the catalytic oxidation reactivity of DBT would be enhanced. The optimum loading amount of HPW was 10%, exceed which DBT conversion would no longer increase obviously. DBT could be completely converted under the optimized conditions (volume ratio of H2O2 to model oil: 1:10, mass ratio of the supported HPW to model oil: 1.25%, temperature: 70 °C) after 9 min of ultrasound irradiation.  相似文献   

13.
First, the kinetic investigation of UF6 + HCl reaction and the isotopic selectivity under CO laser irradiation is performed. On this investigation, the kinetics of UF6 + HCl reaction by using an intracativity CO laser and CO2 laser irradiation system, and the isotopic selectivity for this process are studied theoretically. It is found that under the resonant CO laser and CO2 laser irradiations, the laser-catalyzed reaction rate can increase, and a good selectivity can be achieved. The uranium isotope separation factors β calculated are about 2.44 ∼ 4.05 at laser intensity 50 ∼ 100 W cm−2 and temperature 235 K.  相似文献   

14.
Diacylglycerol oil has been increasingly recognized by its good nutritional properties and therefore, different technologies have been developed for obtaining it. The present work focuses on the diacylglycerol production by hydrolysis reaction of the palm oil using the PS IM and TL IM commercial lipases as biocatalysts under ultrasound irradiation. An experimental design (central composite rotatable design - CCRD) adopting surface response was applied as a tool to evaluate the optimal reaction conditions beyond a restrict number of experiments. Reactions were performed in an ultrasound equipment and different variables were investigated, such as temperature (30-55 °C), enzyme content (1-2 wt.% of oil mass), mechanical stirring (300-700 rpm) and reaction time. Both, PS IM and TL IM enzymes showed the best results after 1 h and 30 min of reaction under 30 °C and, applying 300 rpm as stirring. On these conditions, the diacylglycerol yield was around 34% and 39%, respectively; considering that 1% PS IM was applied for the first one and, 2% TL IM for the second one. Therefore, it was obtained good yield of a diacylglycerol-rich oil in shorter reaction times under sonication and soft conditions. The mathematic model proposed suggested a satisfactorily representation of the process and good correlation among the experimental results and the theoretical values predicted by the model equation were achieved.  相似文献   

15.
Very stringent environmental regulations have limited the level of sulfur in diesel, therefore deep desulfurization of fuels is required. For that purpose, the frequently used industrial process is hydrodesulfurization (HDS) which enables effective elimination of sulfur compounds such as mercaptanes, thiols, sulfides, disulfides from diesel oil, but removal of thiophene sulfur compounds (benzothiophene, dibenzothiophene, 4,6 dimethyldibenzothiophene) is insufficient. Ultrasound assisted oxidative desulfurization (UAOD) as one of several new technologies enables performance under mild conditions without use of explosive hydrogen. A higher reactivity of thiophene sulfur compounds during UAOD also provides conversion into highly polar sulfoxides and sulfones that are easily removed by adsorption or extraction. Nowadays, different catalyst/oxidants systems are being studied to improve oxidation reaction efficiency and enhance the mass transfer in the interfacial region. In this paper, the effect of reaction temperature (40–70 °C) and oxidation time (5–150 min) for UAOD of model diesel fuel with a catalyst/oxidants system (acetic acid/hydrogen peroxide) was investigated in a 70 ml batch reactor. Furthermore, the effects of different initial concentrations of dibenzothiophene (DBT) and of ultrasound amplitude were additionally examined to achieve efficient sulfur removal. The obtained results indicated that temperature and US amplitude of 70 °C and 80% respectively were efficient for conversion of DBT (sulfur concentration up to 3976.86 ppm). The results indicate a rise in the yield of sulfones at higher temperatures and subsequent extraction with N,N-dimethylformamide conducted after the process of oxidation at different solvent/oil ratio revealed sulfur removal efficiency of 98.35%.  相似文献   

16.
We have numerically simulated the dynamic response of single-domain nanomagnets to alternating magnetic fields and discuss nanometer-sized thermal seeds suitable for selectively targeted magnetic hyperthermia. When we assign priority to the easy delivery and biological safety of these fields, the maximum heating power is obtained by the irradiation of a weak field at a medium frequency (∼1 MHz) on almost spherical magnetite nanomagnets with a diameter of approximately 20 nm. On the other hand, the irradiation of the amplified field at a low frequency (∼100 kHz) is more effective if the neural stimulation is allowable.  相似文献   

17.
Ultrasound assisted lipase catalyzed synthesis of poly-6-hydroxyhexanoate   总被引:1,自引:0,他引:1  
Ultrasonic irradiation greatly improved the Candida antarctica lipase B mediated ring opening polymerization of ε-caprolactone to poly-6-hydroxyhexanoate in the ionic liquid 1-ethyl-3-methylimidazolium tetraflouroborate. Compared to the conventional nonsonicated reaction, sonication improved the monomer conversion by 63% and afforded a polymer product of a narrower molecular weight distribution and a higher degree of crystallinity. Under sonication, the polydispersity index of the product was ∼1.44 compared to a value of ∼2.55 for the product of the conventional reaction. With sonication, nearly 75% of the monomer was converted to product, but the conversion was only ∼16% for the reaction carried out conventionally. Compared to conventional operation, sonication enhanced the rate of polymer propagation by >2-fold and the turnover number of the lipase by >3-fold.  相似文献   

18.
We have studied silica-gel by sol–gel technique for the preparation of new dye-laser materials. Silica gel rods with dimension 50 mm × 10 mm have been prepared successfully without breaking. It shows high transparency and good mechanical strength. Tetraethylorthosilicate (TEOS), formamide in molar ratio (0.25:0.70), 80 ml ethanol, 20 ml dimethylformamide (DMF), 10 ml water, hydrochloric acid as a catalyst (at pH 6) and 0.5 ml silicone defoaming agent/surfactant have been used. The synthesis has been carried out in a beaker and the reaction mixture is caste in to the flat bottom glass tubes at 40 °C after thoroughly mixing of all the ingredients. These complex reactions, that carried out by hydrolysis and condensation in the silica gel formation show less gel time ∼8–10 h at 40 °C. The doping of dye (Nile Blue 690) has been taken during the preparation of all the ingredients solution mixture. It has been observed that the compatibility of Nile Blue dye with silica-gel promise good homogeneity with transparency.  相似文献   

19.
We have studied silica gel by sol–gel technique for the preparation of new dye-laser materials. Silica gel rods with dimension 50 × 10 mm2 have been prepared successfully without breaking. It shows high transparency and good mechanical strength. Tetraethylorthosilicate (TEOS), formamide in molar ratio (0.25:0.70), 80 ml ethanol, 20 ml dimethylformamide (DMF), 10 ml water, hydrochloric acid as a catalyst (at pH 6), and 0.5 ml silicone defoaming agent/surfactant have been used. The synthesis has been carried out in a beaker and the reaction mixture is caste in to the flat bottom glass tubes at 40 °C after thoroughly mixing of all the ingredients. These complex reactions, that carried out by hydrolysis and condensation in the silica gel formation show less gel time ∼8–10 h at 40 °C. Coumarin. 440 dye was doped during the preparation of all the ingredients solution mixture. It has been observed that that the compatibility of Nile blue dyes with silica-gel promise good homogeneity with transparency.  相似文献   

20.
Ethyl esters of babassu oil were synthesized by alkaline catalysis to make the green production of biodiesel feasible with simple methods and available technology. Babassu oil is a transparent, light yellow oil extracted from the seeds of the babassu palm (Orbinya sp), and due to its high saturated fatty acid composition (83%), it is considered a non-inedible oil. Transesterification using ethanol represents a valid alternative to using methanol because of ethanol’s lower toxicity and the higher yield on weight compared to methanol. Statistical methodology was applied to optimize the transesterification reaction, which was promoted by ultrasonic waves and mechanical agitation. Nuclear magnetic resonance spectroscopy was used to quantify the conversion attained. Alkaline transesterification assisted by ultrasound produced the best results with respect to reaction time and the phase separation step. The model obtained showed that conversions higher than 97% may be achieved in 10 min with correct tuning of the process variables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号