首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The triple‐resonant (TR) second‐order Raman scattering mechanism in graphene is re‐examined. It is shown that the magnitude of the TR contribution to the photon‐G′ mode coupling function in graphene is one order of magnitude larger than the widely accepted two‐resonant coupling. Enhancement of the order of 100 in the Raman intensity, with respect to the usual double‐resonant model, is found for the G′ band in graphene, and is expected in the related sp2‐based carbon materials, as well. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Few‐layer graphene grown by chemical vapor deposition has been studied by Raman and ultrafast laser spectroscopy. A low‐wavenumber Raman peak of ~120 cm−1 and a phonon‐induced oscillation in the kinetic curve of electron–phonon relaxation process have been observed, respectively. The Raman peak is assigned to the low‐wavenumber out‐of‐plane optical mode in the few‐layer graphene. The phonon band shows an asymmetric shape, a consequence of so‐called Breit‐Wigner‐Fano resonance, resulting from the coupling between the low‐wavenumber phonon and electron transitions. The obtained oscillation wavenumber from the kinetic curve is consistent with the detected low‐wavenumber phonon by Raman scattering. The origin of this oscillation is attributed to the generation of coherent phonons and their interactions with photoinduced electrons. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
We have synthesized 4‐[N‐phenyl‐N‐(3‐methylphenyl)‐amino]‐benzoic acid (4‐[PBA]) and investigated its molecular vibrations by infrared and Raman spectroscopies as well as by calculations based on the density functional theory (DFT) approach. The Fourier transform (FT) Raman, dispersive Raman and FT‐IR spectra of 4‐[PBA] were recorded in the solid phase. We analyzed the optimized geometric structure and energies of 4‐[PBA] in the ground state. Stability of the molecule arising from hyperconjugative interactions and charge delocalization was studied using natural bond orbital analysis. The results show that change in electron density in the σ* and π* antibonding orbitals and E2 energies confirm the occurrence of intramolecular charge transfer within the molecule. Theoretical calculations were performed at the DFT level using the Gaussian 09 program. Selected experimental bands were assigned and characterized on the basis of the scaled theoretical wavenumbers by their total energy distribution. The good agreement between the experimental and theoretical spectra allowed positive assignment of the observed vibrational absorption bands. Finally, the calculation results were applied to simulate the Raman and IR spectra of the title compound, which show agreement with the observed spectra. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Effects of Ag and Ti nanoparticle coatings on resonant Raman scattering in various ZnO thin films are presented. The longitudinal optical (LO) phonons, irrespective of the ZnO quality, exhibit an enhancement and a weakening by the Ag and Ti nanoparticle coatings, respectively. The enhancement (weakening) is always accompanied by a reduced (an increased) intensity ratio of the second to first‐order LO phonons, which can be associated with changes in the electron‐phonon coupling strength in the probed area of ZnO. Angle‐resolved X‐ray photoelectron spectroscopy provides evidence for the bending of the surface energy bands and their changes induced by the metal coatings. The effect of metal nanoparticle coatings on the Raman scattering of ZnO is thus attributed to the changes in the surface electric field. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Resonance enhancement of one‐phonon, two‐phonon, and two‐magnon Raman scattering in a general, exactly solvable, multiband model is explained in a way that is in accordance with the general analytical properties of the total optical conductivity tensor. Using this approach, the charge‐transfer limit of the Emery three‐band model is examined to explain resonance enhancement of the two‐magnon Raman spectra of high‐Tc cuprates, which is found in experiments to be of 3 orders of magnitude. While previous Raman and optical conductivity analyzes of the cuprates, based on the single‐band Hubbard model, are found to be consistent with the picture where one hole per one CuO2 unit is localized on the Cu ion, the present three‐band approach allows the study of the opposite, strong copper‐oxygen hybridization limit, which is found to be in agreement with the results of nuclear magnetic resonance (NMR) and one‐phonon Raman scattering experiments. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
The modulational instability (MI) of the dust‐acoustic waves (DAWs) in an electron‐positron‐ion‐dust plasma (containing super‐thermal electrons, positrons, and ions along with negatively charged adiabatic dust grains) is investigated by the analysis of the non‐linear Schrödinger equation (NLSE). To derive the NLSE, the reductive perturbation method was employed. Two different parametric regions for stable and unstable DAWs are observed. The presence of super‐thermal electrons, positrons, and ions significantly modifies both the stable and unstable regions. The critical wave number kc (at which MI sets in) depends on the super‐thermal electron, positron, and ion, and adiabatic dust concentrations.  相似文献   

7.
The assembly of nanoframe dimers assisted by aptamer‐functionalized smaller spherical gold nanoparticles as prospective surface‐enhanced Raman scattering (SERS) biotraps for riboflavin, an important molecule for biological electron transfer reactions, is reported. In this approach, the aptamer‐coated gold nanoparticles designed for selective binding of riboflavin also serve as the electrostatic driver for nanoframe dimerization in dilute solutions. The gold nanoframe dimers provide unique conditions for plasmonic coupling in a hot spot with sufficient space for the binding of bulky biomolecules. The use of an aptamer allows for highly selective binding of the targeted analyte as compared with conventional organic ligands with excellent low detection limit of one micromole of riboflavin.  相似文献   

8.
As an important chemosensing material involving hexafluoroisopropanol (HFIP) for detecting nerve agents, para‐HFIP aniline (p‐HFIPA) has been firstly synthesized through a new reaction approach and then characterized by nuclear magnetic resonance and mass spectrometry experiments. Fourier transform infrared absorption spectroscopy (FT‐IR) and FT‐Raman spectra of p‐HFIPA have been obtained in the regions of 4000–500 and 4000–200 cm−1, respectively. Detailed identifications of its fundamental vibrational bands have been given for the first time. Moreover, p‐HFIPA has been optimized and vibrational wavenumber analysis can be subsequently performed via density functional theory (DFT) approach in order to assist these identifications in the experimental FT‐IR and FT‐Raman spectra. The present experimental FT‐IR and FT‐Raman spectra of p‐HFIPA are in good agreement with theoretical FT‐IR and FT‐Raman spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Dimethyl 1,3‐dithiole‐2‐thione‐4,5‐dicarboxylate (DDTD) was synthesized and characterized using NMR, Fourier transform (FT)‐Raman, Fourier transform‐infrared (FT‐IR) and UV spectroscopies. Resonance Raman spectra (RRs) were obtained with 341.5, 354.7 and 368.9 nm excitation wavelengths and density functional calculations were carried out to elucidate the π (S C S) →π* (S C S) electronic transitions and the RRs of DDTD in cyclohexane solution. The RRs indicate that the Franck–Condon region photo dynamics have a multidimensional character with motion predominantly along the CS stretch and the C S symmetric stretch modes in the five‐member heterocycle. A preliminary resonance Raman intensity analysis was carried out and the results for DDTD were compared with previously reported results for 1,3‐dithiole‐2‐thione (DTT). Differences and similarities of the spectra in terms of molecular symmetry and electron density are also discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
A systematic study on the surface‐enhanced Raman scattering (SERS) for 3,6‐bi‐2‐pyridyl‐1,2,4,5‐tetrazine (bptz) adsorbed onto citrate‐modified gold nanoparticles (cit‐AuNps) was carried out based on electronic and vibrational spectroscopy and density functional methods. The citrate/bptz exchange was carefully controlled by the stepwise addition of bptz to the cit‐AuNps, inducing flocculation and leading to the rise of a characteristic plasmon coupling band in the visible region. Such stepwise procedure led to a uniform decrease of the citrate SERS signals and to the rise of characteristic peaks of bptz, consistent with surface binding via the N heterocyclic atoms. In contrast, single addition of a large amount of bptz promoted complete aggregation of the nanoparticles, leading to a strong enhancement of the SERS signals. In this case, from the distinct Raman profiles involved, the formation of a new SERS environment became apparent, conjugating the influence of the local hot spots and charge‐transfer (CT) effects. The most strongly enhanced vibrations belong to a1 and b2 representations, and were interpreted in terms of the electromagnetic and the CT mechanisms: the latter involving significant contribution of vibronic coupling in the system. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
The technique of femtosecond time‐resolved coherent anti‐Stokes scattering (fs‐CARS) is used to investigate the strongly perturbed ν1 ro‐vibrational Raman band of formaldehyde (H2CO). The time‐dependent signal is simulated using a ‘Watson‐’Hamiltonian in A‐type reduction and Raman theory for asymmetric rotors. The results are compared with the experimental data. The fs‐CARS method measures the evolution of the polarization in a molecular ensemble via superposition of many states and is sensitive to spectral irregularities or line shifts of the involved transitions. ‘Coriolis’ interactions play a major role in the analysis of the ν1 band of formaldehyde. We successfully simulate the fs‐CARS transient signal from the ν1 band of formaldehyde including a model for multiple ‘Coriolis’ interactions, without the necessity of describing the complete interaction between all the vibrational levels. ‘Coriolis’ coupling coefficients and energy shifts are derived from the experiment by a least‐square fit. The results are discussed and compared to literature values. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
The optimized geometry and structural features of the most prospective electro‐optic crystal 4‐(N,N‐dimethylamino)‐N‐methyl‐4′‐toluene sulfonate (DAST), and the vibrational spectral investigations have been comprehensively described with the near infrared Fourier transform (NIR FT) Raman and Fourier transform infrared (FT‐IR) spectra supported by the density functional theoretical (DFT) computations to elucidate the contribution of vibrational modes to the linear electro‐optic (LEO) effect. Mulliken population analysis and natural bond orbital (NBO) analysis have also been carried out to analyze the effects of intramolecular charge transfer (ICT), intramolecular hydrogen bonding and hyperconjugative interactions on the geometries. The influence of CT interaction between the phenyl ring and the dimethylamino group of the nonlinear optical (NLO) chromophore on the endocyclic and exocyclic angles, and the electronic effects such as hyperconjugation and back‐donation on the methyl hydrogen atoms have been examined. The concurrent intense activation of Raman and IR activities of the effective conjugation vibrational coordinate, which significantly contributes to the LEO effect resulting from the strong electron–phonon (e/ph) coupling, has been analyzed in detail. The effects of frontier orbitals, highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), transition of electron density (ED) transfer and the influence of planarity in the stilbazolium ring on the first hyperpolarizability are also discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
We address a model study which includes the co-existence of the charge density wave (CDW) and ferromagnetic interactions in order to explain the colossal magnetoresistance (CMR) in manganites. The Hamiltonian consists of the ferromagnetic Hund's rule exchange interaction between eg and t2g spins, Heisenberg core spin interactions and the CDW interaction present in the eg band electrons. The core electron magnetization, induced eg electron magnetization and the CDW gap are calculated using Zubarev's Green's function technique and determined self-consistently. The effect of core electron magnetization and the CDW interaction on the induced magnetization as well as on the occupation number in the different spin states of the eg band electrons are investigated by varying the model parameters of the system like the CDW coupling, the exchange coupling, the Heisenberg coupling and the external field. It is observed that the induced magnetization exhibits re-entrant behaviour and exists within a narrow temperature range just below the Curie temperature. This unusual behaviour of the eg band electrons will throw some new insights on the physical properties of the manganite systems.  相似文献   

14.
In this work, we demonstrate a cascaded, multiplicative electromagnetic enhancement effect in surface‐enhanced Raman scattering (SERS) on periodically micropatterned films made of colloidal gold nanoparticles, prepared by a self‐assembly approach, without implying lithography procedures. The multiplicative enhancement effect is obtained by combining surface plasmon near‐field enhancement due to nanoscale features with far‐field photonic coupling by periodic microscale features. The effect is observed for both internal Raman reporters (molecules attached to the Au colloids before their assembly) and external Raman probes (molecules adsorbed on the samples after film assembly). The ability of the patterned films for far‐field light coupling is supported by reflectivity spectra, which present minima/maxima in the visible spectral range. Finite‐difference time‐domain computer simulations of the electric field distribution also support this interpretation. The fabricated dual‐scale SERS substrates exhibit a good spot‐to‐spot reproducibility and time stability, as proved by the SERS response over a time scale longer than 1 month. The experimental demonstration of this cascaded electromagnetic enhancement effect contributes to a better understanding of SERS and can affect future design of SERS substrates. Moreover, such dual‐scale colloidal films prepared by convective self‐assembly can be of general interest for the broader field of nanoparticle‐based devices. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Electron–phonon coupling (EPC) is an important issue in semiconductor physics because of its significant influence on the optical and electrical properties of semiconductors. In this work, the EPC in wide bandgap semiconductors including hexagonal BN and AlN was studied by deep UV resonance Raman spectroscopy. Up to fourth‐order LO phonons are observed in the resonance Raman spectrum of hexagonal AlN. By contrast, only the prominent emission band near the band‐edge and the Raman band attributed to E2g mode are detected for hexagonal BN with deep UV resonance excitation. The different behavior in resonant Raman scattering between the III‐nitrides reflects their large difference in EPC. The mechanism for EPC in hexagonal BN is the short‐range deformation interaction, while that in hexagonal AlN is mainly associated with the weak long‐range Fröhlich interaction. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
A theory is developed for the Raman scattering of light from a charge-density-wave (CDW) superconductor on the basis of a modified Balseiro-Falicov interactibn pro.posed by the authors and including renormalization of both the Coulomb interaction at the small q limit, and the residual coupling between electrons. Both the electron-photon and electron-phonon vertices are taken into account. It is shown that there always exist poles at frequency ω=2Δ (Δ is superconducting gap) in the effective electron polarization and in the phonon self-energy, and these poles survive the Coulomb screening and the renormalization of the residual electron interactions if the coupling parameter g2(k) is anisotropic, in contrast with an isotropic electron gas. The effect of the Littlewood-Varma interaction in a coexistent CDW-siiperconductcr is also discussed.  相似文献   

17.
The optical properties of the quarter-filled single-band CDW systems have been reexamined in the model with the electron-phonon coupling related to the variations of electron site energies. It appears that the indirect, electron-mediated coupling between phase phonons and external electromagnetic fields vanishes for symmetry reasons, at variance with the infrared selection rules used in the generally accepted microscopic theory. It is shown that the phase phonon modes and the electric fields couple directly, with the coupling constant proportional to the magnitude of the charge-density wave. The single-particle contributions to the optical conductivity tensor are determined for the ordered CDW state and the related weakly doped metallic state by means of the Bethe-Salpeter equations for elementary electron-hole excitations. It turns out that this gauge-invariant approach establishes a clear connection between the effective numbers of residual, thermally activated and bound charge carriers. Finally, the relation between these numbers and the activation energy of dc conductivity and the optical CDW gap scale is explained in the way consistent with the conductivity sum rules.  相似文献   

18.
IR and Raman spectra (RS) of polycrystalline 3‐(or 4 or 6)‐methyl‐5‐nitro‐2‐pyridinethione have been measured and analyzed by means of density functional theory (DFT) quantum chemical calculations. The B3LYP/6‐311G(2d,2p) approach has been applied for both the thiol and thione tautomers due to the possibility of the formation of these two thiole forms. Molecular structures of these compounds have been optimized starting from different molecular geometries of the thiol group and thione group. Two conformations of the 2‐mercaptopyridine, trans and cis, have been taken into account. It was shown that the studied compounds appear in the solid state in the thione form. The effect of the hydrogen‐bond formation in the studied compounds has been considered. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
A nanosecond time‐resolved resonance Raman (ns‐TR3) spectroscopic investigation of the intermolecular hydrogen‐abstraction reaction of the triplet state of 4‐benzoylpyridine (4‐BPy) in 2‐propanol solvent is reported. The TR3 results reveal a rapid hydrogen abstraction (<10 ns) by the 4‐BPy triplet state (nπ*) with the 2‐propanol solvent, leading to formation of a 4‐BPy ketyl radical and an associated dimethyl ketyl radical partner from the solvent. The recombination of these two radical species occurs with a time constant about 200 ns to produce a para‐N‐LAT (light absorbing transient). The structure, major spectral features, and identification of the ketyl radical and the para‐N‐LAT coupling complex have been determined and confirmed by comparison of the TR3 results with results from density functional theory (DFT) calculations. A reaction pathway for the photolysis of 4‐BPy in 2‐propanol deduced from the TR3 results is also presented. The electron‐withdrawing effect of the heterocyclic nitrogen for 4‐BPy on the triplet state makes it have a significantly higher chemical reactivity for the hydrogen abstraction with 2‐propanol compared to the previously reported corresponding benzophenone triplet reaction under similar reaction conditions. In addition, the 4‐BPy ketyl radical reacts with the dimethyl ketyl radical to attach at the para‐N atom position of the pyridine ring to form a cross‐coupling product such as 2‐[4‐(hydroxy‐phenyl‐methylene)‐4h‐pyridin‐1‐yl]‐propan‐2‐ol instead of attacking at the para‐C atom position as was observed for the corresponding benzophenone reaction reported in an earlier study. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
In the frame of nuclear safeguards, knowledge of the chemical form (stoichiometry) of the uranium compounds present in the micrometric particulate material sampled by wiping surfaces in an inspected nuclear facility may point out the industrial process implemented in the installation. Micro‐Raman spectroscopy (MRS) coupled with scanning electron microscopy (SEM) has been used for the first time to analyze micrometer‐size particles of various uranium oxides [UO2, U3O8, UO3, and UO4 · 4(H2O)] deposited on carbon disks. Uranium particles are detected by means of SEM, and Raman analysis is then directly carried out inside the SEM measurement chamber without moving the carbon disk from SEM to MRS. When particles are deposited on appropriate carbon disks (sticky carbon tapes), despite a loss of signal‐to‐noise ratio of about an order of magnitude with regard to the stand‐alone MRS, all uranium oxides are successfully identified in particles by in‐SEM Raman analysis, obtaining similar characteristic bands as the ones obtained with the stand‐alone MRS. Moreover, with the SEM–MRS coupling, particles as small as 1 µm can be analyzed, whereas, without the SEM–MRS coupling, only particles larger than ~5 µm are efficiently analyzed, after localization inside the SEM, transfer of the sample holder into the MRS, and relocation of the particles inside the MRS. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号