首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The average tropospheric volume mixing ratios of chlorofluorocarbon 12 (CCl2F2) have been retrieved from high-spectral resolution ground-based infrared solar-absorption spectra recorded from March 1982 to October 2003 with the McMath Fourier transform spectrometer at the US National Solar Observatory facility on Kitt Peak in southern Arizona (31.9°N, 111.6°W, 2.09 km altitude). The retrievals are based on fits to the unresolved ν8 band Q-branches near using the SFIT2 retrieval algorithm. The annual increase rate was equal to (16.88±1.37) parts per trillion (10-12) by volume at the beginning of the time series, March 1982, or (4.77±0.04)%, 1 sigma, declining progressively to (2.49±1.24) parts per trillion, by volume at the end, October 2003, or (0.46±0.24)%, 1 sigma. Average tropospheric mixing ratios from the solar spectra have been compared with average surface flask and in situ sampling measurements from the Climate Monitoring and Diagnostics Laboratory (CMDL) station at Niwot Ridge, CO, (USA) (40.0°N, 105.5°W, 3013 m altitude). The average ratio and standard deviation of the monthly means of the retrieved tropospheric mixing ratios relative to the CMDL surface mixing ratios is (1.01±0.03) for the overlapping time period. Both datasets demonstrate the progressive impact of the Montreal protocol and its strengthening amendments on the trend of CCl2F2, though a tropospheric decrease has yet to be observed.  相似文献   

2.
We report retrievals of COClF (carbonyl chlorofluoride) based on atmospheric chemistry experiment (ACE) solar occultation spectra recorded at tropical and mid-latitudes during 2004-2005. The COClF molecule is a temporary reservoir of both chlorine and fluorine and has not been measured previously by remote sensing. A maximum COClF mixing ratio of (10-12 per unit volume, 1 sigma) is measured at 28 km for tropical and subtropical occultations (latitudes below 20° in both hemispheres) with lower mixing ratios at both higher and lower altitudes. Northern hemisphere mid-latitude mixing ratios (30-50°N) resulted in an average profile with a peak mixing ratio of , 1 sigma, at 27 km, also decreasing above and below that altitude. We compare the measured average profiles with the one reported set of in situ lower stratospheric mid-latitude measurements from 1986 and 1987, a previous two-dimensional (2-D) model calculation for 1987 and 1993, and a 2-D-model prediction for 2004. The measured average tropical profile is in close agreement with the model prediction; the northern mid-latitude profile is also consistent, although the peak in the measured profile occurs at a higher altitude (2.5-4.5 km offset) than in the model prediction. Seasonal average 2-D-model predictions of the COClF stratospheric distribution for 2004 are also reported.  相似文献   

3.
We have studied the influence of CO on the adsorption of benzene on the Co(0 0 0 1) surface using LEED, XPS, TDS and work function measurements. CO was found to reduce the benzene adsorption, but even at saturation CO exposure no complete blocking was observed. Thermal desorption of the coadsorbed layer featured CO and H2 peaks indicating partial dehydrogenation of benzene and retaining of the CO bond. Ordered LEED structures were found with all coverages: Pre-adsorption of CO led to patterns already seen for pure carbon monoxide adsorption. Pre-adsorption of benzene showed the known structure of pure benzene also with small CO exposures, but higher CO exposures yielded a mixture of and patterns.  相似文献   

4.
Infrared solar spectra recorded with the Fourier transform spectrometer in the McMath solar telescope complex on Kitt Peak (31.9°N latitude, 111.6°W, altitude), southwest of Tucson, Arizona, have been analyzed to retrieve average SF6 tropospheric mixing ratios over a two-decade time span. The analysis is based primarily on spectral fits to absorption by the intense, unresolved ν3 band Q branch at . A best fit to measurements recorded with SF6 near typical background concentrations yields a SF6 increase in the average tropospheric mixing ratio from (10−12 per unit volume) in March 1982 to in March 2002. The long-term increase by a factor of 3.34 over the time span is consistent with the rapid growth of surface mixing ratios measured in situ at Northern Hemisphere remote stations, though the infrared measurements show a large scatter. Average tropospheric mixing ratio enhancements above background by 2-3 orders of magnitude have been identified in spectra recorded on 5 days between November 1988 and April 1997. These spectra were individually analyzed in an attempt to detect the strongest 8- band of SF5CF3, a molecule recently identified with an atmospheric growth that has closely paralleled the rise in SF6 during the past three decades. Absorption by the strongest SF5CF3 band was predicted to be above the noise level in the Kitt Peak spectrum with the highest average mean tropospheric SF6 mixing ratio, assuming the reported atmospheric SF5CF3/SF6 ratio and a room temperature absorption cross sections reported for the SF5CF3 903-cm−1 band. An upper limit of 8×1015 for the SF5CF3 total column was estimated for this case. We hypothesize that the highly elevated SF6 levels above Kitt Peak resulted from a local release experiment rather than production via electrochemical fluoridation of intermediate products, the proposed source of atmospheric SF5CF3. The absence of the SF5CF3 feature in the spectra with elevated SF6 is consistent with the absence of SF5CF3 reported in a pure SF6 sample.  相似文献   

5.
To record the infrared emission of hot molecular gases an optimized emission apparatus for the Bruker IFS 120 HR high-resolution FT-IR spectrometer has been constructed. Using this apparatus the hot gas emission spectrum of HCN at 1420 K has been recorded in the wavenumber region of 6000-6800 cm−1 with a resolution of 0.044 cm−1. This work reports the analysis of 33 bands with 58 subbands (9200 line positions). Thirty-seven rovibronic states of HCN including at 12 603 cm−1 have been characterized for the first time and for 25 other states it was possible to improve the existing spectroscopic constants substantially. The very dense emission spectrum with many overlapping features was analyzed with new spectrum analysis software implemented using the MathematicaTM computer algebra system. Spectroscopic constants have now been determined for 220 HCN rovibronic states. For 102 states the rovibrational spectroscopic constants have been determined for the first time or improved substantially using emission spectra measured in Giessen.  相似文献   

6.
Using the interaction parameters up to the third neighbors and activated form of O and CO diffusion and their reaction, the model has been proposed for Monte-Carlo simulations describing the catalytic O + CO → CO2 reaction and occurring phase transitions on Pd(1 1 1) surface. Upon adsorption of CO the pre-adsorbed oxygen transforms from p(2 × 2)O phase into and phases in the limit of room and moderate temperatures, respectively. We demonstrate that the kinetic effects determine both the occurrence of the p(2 × 1)O and disappearance of the phases at moderate and low temperatures, respectively. Using reaction rate as a fit parameter, we show that at room temperature the start of the reaction can be synchronized with the occurrence of phase.  相似文献   

7.
Using a novel Fourier-domain mode-locking (FDML) laser scanning 1330-1380 nm, we have developed a gas thermometer based on absorption spectroscopy that is appropriate for combustion gases at essentially arbitrary conditions. The path-integrated measurements are particularly useful in homogeneous environments, and here we present measurements in a controlled piston engine and a shock tube. Engine measurements demonstrate a RMS temperature precision of ±3% at 1500 K and 200 kHz bandwidth; the precision is improved dramatically by averaging. Initial shock tube measurements place the absolute accuracy of the thermometer within ∼2% to 1000 K. The sensor performs best when significant H2O vapor is present, but requires only at 300 K, at 1000 K, or at 3000 K for 2% accurate thermometry, assuming a 4 kHz measurement bandwidth (200 kHz scans with 50 averages). The sensor also provides H2O mole fraction and shows potential for monitoring gas pressure based on the broadening of spectral features. To aid in designing other sensors based on high-temperature, high-pressure H2O absorption spectroscopy, a database of measured spectra is included.  相似文献   

8.
Polarization-resolved forward degenerate four-wave mixing (DFWM) in a nonresonant region revealed the effective third-order nonlinear susceptibility of colloidal CdTe nanocrystals (NCs) with the size near the Bohr radius and various concentrations. The second hyperpolarizabilities, and , of the CdTe NCs were ∼1.15 × 10−41 m5/V2 and ∼3.01 × 10−42 m5/V2 from the measurement of the concentration-dependent third-order nonlinear susceptibility of CdTe NCs, respectively. The ratio (/) of the hyperpolarizabilities was ∼0.26, which indicated a large contribution of an electronic polarization process to the third-order nonlinearity of CdTe NCs.  相似文献   

9.
Coverage-dependent adsorption energy of the Ge/Ru(0 0 0 1) growth system and the geometrical distortions of the most stable adsorption structure are investigated through first-principles calculations within density functional theory. A local minimum in adsorption energy is found to be at a Ge coverage of 1/7 monolayer with a Ru(0 0 0 1)- symmetry. Based on this stale superstructure, the scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) images are simulated by means of surface local-density of states (LDOS). The results are consistent well with the STM measurements on the phase for Ge overlayer on Ru(0 0 0 1). From this stimulation, the relations between the STM images and the lattice distortion are also clarified.  相似文献   

10.
Kenji Nakao 《Surface science》2007,601(18):3796-3800
The infrared (IR) chemiluminescence studies of CO2 formed during steady-state CO oxidation over Pd(1 1 1), Pt(1 1 1), and Rh(1 1 1) surfaces were carried out. Analysis of their emission spectra indicates that the order of the average vibrational temperature () values of CO2 formed during CO oxidation was as follows: Pd(1 1 1) > Pt(1 1 1) > Rh(1 1 1), and the order is coincident with the potential energy in the transition state expected by the theoretical calculations. Furthermore, it is suggested that the bending vibrational temperature () can also be influenced by the angle of O-C-O (∠OCO) of the activated complex in the transition state, which has also been proposed by the theoretical calculations.  相似文献   

11.
The magnetic properties of nickel ferrite nanoparticles in the form of powders, prepared by the sol-gel process and subjected to different annealing temperatures, were investigated using both static and dynamic measurements namely hysteresis, zero field cooled-field cooled magnetization (ZFC-FC) measurements and Mössbauer spectroscopy. The Transmission Electron Microscopy (TEM) studies reveal particle sizes for the as-prepared particles which increases upto 52 nm with annealing. A bimodal distribution, upto an annealing temperature of was observed. ZFC-FC measurements for the as-prepared samples reveal twin peaks, indicative of the bimodal size distribution. ZFC-FC measurements performed for fields varying from 100 Oe to 3 kOe show a superparamagnetic phase with blocking temperatures between 320 and . Numerical simulations for the ZFC-FC studies indicate that the signature of the bimodal size distribution can be seen only at very low fields. The variation of coercivity with particle size, as determined from the hysteresis measurements, shows a transition from a single domain to a multi domain state for particle sizes larger than 35 nm. Mössbauer measurements performed at room temperature for the as-prepared sample shows a six finger pattern for the samples with higher particle size and a doublet pattern for the samples with smaller particle size, which is indicative of their superparamagnetic nature.  相似文献   

12.
Rotational structure in the fundamental band of isobutylene has been examined at room temperature using a combination of FTIR and Pb-salt diode laser instruments. The highest spectral resolution for the FTIR measurements was 0.125 cm−1. Even at this resolution however, rotational structure for the band could be observed and appeared to possess a very regular pattern. A preliminary spectral assignment was obtained using the Watson/Gora asymptotic approximation for a rigid oblate asymmetric rotor. Within this approximation, the band origin was determined to be 890.937 (4) cm−1. Excited state rotational constants, without the inclusion of centrifugal distortions terms, are A = 0.3033(16), B = 0.2801(12) and C = 0.15362 (8) cm−1 respectively. Finally, a full set of spectroscopic constants, including quartic centrifugal distortion constants, were obtained for the band by including the high resolution Pb-salt spectra.  相似文献   

13.
The unclamped relative permittivity, , and the Pockels coefficient, , of congruent lithium niobate at a frequency f = 5760 Hz have been determined at low temperatures (7 K < T < 300 K). A He cryostat setup mounted to one arm of an electronically phase-stabilized Michelson interferometer was utilized for the measurement of . A continuous decrease in both parameters was observed as T → 0 K with limiting values of and , respectively.  相似文献   

14.
15.
Yong Ding 《Surface science》2007,601(2):425-433
The atomic scale surface structures of ZnO non-polar as well as and ±(0 0 0 1) polar surfaces have been directly imaged by high-resolution transmission electron microscopy (HRTEM). The observations were made on clean surfaces created by irradiating a single ZnO nanobelt using 400 keV electron beam in TEM, under which ZnO dots were grown epitaxially and in situ on the surface of the nanobelt. A technique is demonstrated for directly distinguishing the surface polarity of the ±(0 0 0 1) polar surfaces. For the non-polar surface, HRTEM images and simulation results indicate that the Zn ions in the first and second layer suffer from inward and outward relaxation, respectively; the oxygen ions in the first and second layer prefer shifting to vicinal Zn ions to shorten the bonding distance. For the oxygen-terminated polar surface, the oxygen ions at the outmost top layer were directly imaged. a × 2 reconstruction has also been observed at the surface, and its atomic structure has been proposed based on image simulation. Oxygen-terminated polar surface is flat and shows no detectable reconstruction. For the Zn-terminated (0 0 0 1) polar surface, HRTEM may indicate the existence of Zn vacancies and a possibly c-axis, random outward displacement of the top Zn ions. Our data tend to support the mechanism of removal of surface atoms for maintaining the stability of (0 0 0 1) polar surfaces.  相似文献   

16.
17.
Room temperature deposition of Sn on Cu(1 0 0) gives rise to a rich variety of surface reconstructions in the submonolayer coverage range. In this work, we report a detailed investigation on the phases appearing and their temperature stability range by using low-energy electron diffraction and surface X-ray diffraction. Previously reported reconstructions in the submonolayer range are p(2 × 2) (for 0.2 ML), p(2 × 6) (for 0.33 ML), ()R45° (for 0.5 ML), and c(4 × 4) (for 0.65 ML). We find a new phase with a structure for a coverage of 0.45 ML. Furthermore, we analyze the temperature stability of all phases. We find that two phases exhibit a temperature induced reversible phase transition: the ()R45° phase becomes ()R45° phase above 360 K, and the new phase becomes p(2 × 2) also above 360 K. The origin of these two-phase transitions is discussed.  相似文献   

18.
Luo Tao  Wu XuPing 《Optics Communications》2008,281(23):5683-5686
Temperature structure parameter () controls the propagation of electromagnetic and acoustic waves in the atmospheric boundary layer (ABL), but it is difficult to be measured, especially in the upper part of the ABL. In this paper, optical turbulence is simulated in a laboratory convective tank, and profiles in the tank are measured by using laser beam patterns. Simulation results show that the Wyngaard’s scaling relationship for in the entrainment layer is only valid for large convective Richardson number (Ri > 40) cases. When Ri < 40, a new scaling relationship is proposed based on the laboratory and field measurements. The application of these relationships in estimating optical turbulence in the entrainment layer is discussed.  相似文献   

19.
Hangyao Wang 《Surface science》2009,603(16):L91-3016
Metal oxides are of interest as environmental oxidation catalysts, but practical applications are often limited by poorly understood surface poisoning processes. RuO2 is active for CO oxidation under UHV conditions but is deactivated by some surface poisoning processes at ambient pressures. In this work, we report kinetic models of surface poisoning during CO oxidation over RuO2(1 1 0), based on data obtained from plane-wave, supercell DFT calculations. While a surface carbonate is stable at low O2 pressures and high CO2 exposures, it is not stable under catalytic conditions. A surface bicarbonate is more stable and deactivates the RuO2 surface over a wide range of CO and oxygen pressures in the presence of trace amounts of water.  相似文献   

20.
M. Gurnett 《Surface science》2009,603(4):727-735
In this article we report our findings on the electronic structure of the Li induced Ge(1 1 1)-3 × 1 reconstruction as determined by angle-resolved ultraviolet photoelectron spectroscopy (ARUPS) and core-level spectroscopy using synchrotron radiation. The results are compared to the theoretical honeycomb-chain-channel (HCC) model for the 3 × 1 reconstruction as calculated using density functional theory (DFT). ARUPS measurements were performed in both the and directions of the 1 × 1 surface Brillouin zone at photon energies of 17 and 21.2 eV. Three surface related states were observed in the direction. In the direction, at least two surface states were seen. The calculated band structure using the single-domain HCC model for Li/Ge(1 1 1)-3 × 1 was in good agreement with experiment, allowing for the determination of the origin of the experimentally observed surface states. In the Ge 3d core-level spectra, two surface related components were identified, both at lower binding energy with respect to the Ge 3d bulk peak. Our DFT calculations of the surface core-level shifts were found to be in fair agreement with the experimental results. Finally, in contrast to the Li/Si(1 1 1)-3 × 1 case, no double bond between Ge atoms in the top layer was found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号