首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
镍基单晶超合金Ni/Ni3Al晶界的分子动力学模拟   总被引:3,自引:3,他引:0       下载免费PDF全文
在镍基单晶超合金中,由于单晶Ni的晶格常数比单晶Ni3Al的稍小,在Ni/Ni3Al晶界面上必然要出现错配.采用分子动力学模拟了镍基单晶超合金的Ni/Ni3Al晶界的结构,考虑了两个不同的初始模型,并进行了分子动力学弛豫.弛豫的结果均表明:由于晶格的差异形成的错配能不是通过长程晶格错配的方式来释放,而是通过在局部区域形成位错的方式释放的.由于Ni3Al相周围Ni相环境的不同,形成的位错也有所不同.  相似文献   

2.
朱弢  王崇愚  干勇 《物理学报》2009,58(13):156-S160
运用分子动力学方法,研究了镍基单晶高温合金γ/γ′相界面错配位错网络的特征.通过对界面位错的形成、位错的反应、位错网络的演化等现象的分析发现,在温度场影响下,位错网络将由弛豫初期的十四面体演化成最终的正六面体. 关键词: 镍基单晶高温合金 相界面错配位错 位错网络演化 分子动力学  相似文献   

3.
谢红献  于涛  刘波 《物理学报》2011,60(4):46104-046104
用分子动力学方法研究了温度对镍基单晶高温合金γ/γ'相界面上错配位错运动的影响.研究结果表明:无论是在低温还是在高温下,错配位错的运动都是通过扭折的形核及扭折沿位错线的迁移来实现;在低温时错配位错的相互作用有利于错配位错的运动;然而在高温时错配位错的相互作用可以阻碍错配位错的运动,从而阻碍γ和γ'相界面的相对滑动,有利于提高镍基单晶高温合金的高温力学性能. 关键词: 镍基单晶高温合金 相界面 错配位错 分子动力学模拟  相似文献   

4.
用分子动力学方法研究了镍基单晶高温合金γ/γ′(001)相界面上三种各具特征的原子堆垛结构. 能量学计算发现,存在最优构型,动力学模拟显示不同构型的界面弛豫后,在相界面上都“成对”出现刃型错配位错. 相关计算表明体系能量、界面形成能及弛豫能都依赖于界面原子堆垛特征,而几何特征则具共性,即不同原子构型的界面具有同一的应力释放模式.  相似文献   

5.
耿翠玉  王崇愚  朱弿 《物理学报》2005,54(3):1320-1324
用分子动力学方法研究了镍基单晶高温合金γ/γ′(001)相界面上三种各具特征的原子堆垛结构. 能量学计算发现,存在最优构型,动力学模拟显示不同构型的界面弛豫后,在相界面上都“成对”出现刃型错配位错. 相关计算表明体系能量、界面形成能及弛豫能都依赖于界面原子堆垛特征,而几何特征则具共性,即不同原子构型的界面具有同一的应力释放模式.  相似文献   

6.
于松  王崇愚  于涛 《物理学报》2007,56(6):3212-3218
基于纯金属元素Ni,Al和Re的基本物理性质,建立了一个Ni-Al-Re三元体系的分析型嵌入原子多体势.结合分子动力学计算了Ni3Al的平衡晶格常数、弹性模量、结合能、空位形成能以及反位置缺陷形成能,并分析了Ni3Al中点缺陷的存在形式.计算结果表明,当成分偏离理想化学配比时出现反位置缺陷.同时研究了Re在Ni3Al中的择优占位以及Re在Ni3Al和Ni中的集团化行为.计算结果表明,Re在Ni3Al中优先置换Al的位置,且发现当Re原子团的尺寸接近于11?时,Re原子团的长大趋势变弱.计算结果与实验以及其他的理论计算结果相符合. 关键词: 嵌入原子势 3Al')" href="#">Ni3Al Re 占位 集团化  相似文献   

7.
双粒子模型的基础是描述原子之间相互作用势为EAM(embedded atom method)势的Monte Carlo模拟. 模型建议:在Ni3Al晶界弛豫时,微量元素原子既被看作为偏析子又被看作为诱发子. 作为偏析子它在晶界偏析(或富集),作为诱发子它诱发Ni原子在晶界偏析(或富集). 可见本模型能解析共偏析(或共富集)现象. 根据正(或诱发子)效应与负(或偏析子)效应的联合影响,模型解释了Ni在Ni3Al晶界最明显富集现象. 关键词: 偏析子与诱发子 基体效应 在晶界共富集 晶界内聚性  相似文献   

8.
吴文平  郭雅芳  汪越胜  徐爽 《物理学报》2011,60(5):56802-056802
运用分子动力学方法,研究了镍基单晶高温合金γ/γ' 相界面错配位错网在剪切载荷作用下的演化特征.结果表明:(100),(110) 和 (111) 三种相界面形成的位错网在载荷作用下有不同形式和不同程度的损伤,其变形和损伤随温度的增加而增加.在相同的剪切载荷和温度作用下,(100) 相界面形成的正方形位错网最稳定. 关键词: 镍基单晶高温合金 界面位错网 分子动力学  相似文献   

9.
胡兴健  郑百林  胡腾越  杨彪  贺鹏飞  岳珠峰 《物理学报》2014,63(17):176201-176201
利用分子动力学方法分别模拟金刚石压头压入Ni模型和Ni基单晶合金γ/γ′模型的纳米压痕过程,通过计算得到两种模型[001]晶向的弹性模量及硬度.采用中心对称参数分析不同压入深度时两种模型内部位错形核、长大过程以及Ni基单晶合金γ/γ′(001)相界面错配位错对纳米压痕过程的影响.结果显示:压入深度0.641 nm之前,两种模型的压入载荷-压入深度曲线相似,说明此时相界面处的错配位错对纳米压痕过程的影响很小;压入深度0.995 nm时,在错配位错处发生位错形核,晶体在γ相中沿着{111}面滑移,随即导致Ni基单晶合金γ/γ′模型压入载荷的下降,并在压入深度达到1.487 nm之前低于Ni模型相同压入深度时的压入载荷;压入深度从1.307 nm开始,由于相界面错配位错的阻碍作用,Ni基单晶合金γ/γ′模型压入载荷上升速度较快.  相似文献   

10.
合金元素Zr韧化不同计量比Ni3Al合金的微观机制   总被引:1,自引:0,他引:1       下载免费PDF全文
利用正电子湮没技术(PAT)测量了不同化学计量比二元Ni33Al合金及不同Zr含 量Ni33Al合金的正电子寿命谱,并估算了合金基体和晶界缺陷处的自由电子密度.结果表明,二元Ni7777Al2323合金的基体和缺陷态的自由电子密度都比二元 Ni7474Al2626合金的高. Ni33Al合金晶界缺陷处开空间大于Ni空位或Al空位的开空间,晶界缺 陷处的自 关键词: 3Al合金')" href="#">Ni33Al合金 微观机制 自由电子密度 韧化  相似文献   

11.
于涛  谢红献  王崇愚 《中国物理 B》2012,21(2):26104-026104
The effect of H impurity on the misfit dislocation in Ni-based single-crystal superalloy is investigated using the molecular dynamic simulation. It includes the site preferences of H impurity in single crystals Ni and Ni3Al, the interaction between H impurity and the misfit dislocation and the effect of H impurity on the moving misfit dislocation. The calculated energies and simulation results show that the misfit dislocation attracts H impurity which is located at the γ/γ' interface and Ni3Al and H impurity on the glide plane can obstruct the glide of misfit dislocation, which is beneficial to improving the mechanical properties of Ni based superalloys.  相似文献   

12.
Several groups have reported the misfit dislocation structures in Au/Ni0.8Fe0.2 multilayers where the lattice parameter misfit is very large. To explore the factors controlling such structures, molecular dynamics simulations have been used to simulate the vapour-phase growth of (111)-oriented Au/Ni0.8Fe0.2 multilayers. The simulations revealed the formation of misfit dislocations at both the gold-on-Ni0.8Fe0.2 and the Ni0.8Fe0.2-on-gold interfaces. The dislocation configuration and density were found to be in good agreement with previously reported high-resolution transmission electron microscopy observations. Additional atomic-scale simulations of a model nickel–gold system indicated that dislocations are nucleated as the first nickel layer is deposited on gold. These dislocations have an (a/6)?112? Burgers vector, typical of a Shockley partial dislocation. Each dislocation creates an extra {220} plane in the smaller lattice parameter nickel layer. These misfit-type dislocations effectively relieve misfit strain. The results also indicated that the dislocation structure is insensitive to the energy of the depositing atoms. Manipulation of the deposition processes is therefore unlikely to reduce this component of the defect population.  相似文献   

13.
王云江  王崇愚 《中国物理 B》2009,18(10):4339-4348
A model system consisting of Ni[001](100)/Ni3Al[001](100) multi-layers are studied using the density functional theory in order to explore the elastic properties of single crystal Ni-based superalloys. Simulation results are consistent with the experimental observation that rafted Ni-base superalloys virtually possess a cubic symmetry. The convergence of the elastic properties with respect to the thickness of the multilayers are tested by a series of multilayers from 2γ′+2γ to 10γ′+10γ atomic layers. The elastic properties are found to vary little with the increase of the multilayer’s thickness. A Ni/Ni3Al multilayer with 10γ′+10γ atomic layers (3.54 nm) can be used to simulate the mechanical properties of Ni-base model superalloys. Our calculated elastic constants, bulk modulus, orientation-dependent shear modulus and Young’s modulus, as well as the Zener anisotropy factor are all compatible with the measured results of Ni-base model superalloys R1 and the advanced commercial superalloys TMS-26, CMSX-4 at a low temperature. The mechanical properties as a function of the γ′ phase volume fraction are calculated by varying the proportion of the γ and γ′ phase in the multilayers. Besides, the mechanical properties of two-phase Ni/Ni3Al multilayer can be well predicted by the Voigt-Reuss-Hill rule of mixtures.  相似文献   

14.
The effect of transition metal solutes on the lattice parameters of γ-TiAl and α2-Ti3Al were studied by first principles calculations to find suitable elements for controlling the α2/γ interfacial misfit in lamellar Ti–Al alloys. Better agreement was found between the calculated and experimental phase and site preferences of impurity atoms than in a previous first principles study. The calculated lattice parameters suggest that elements in groups 6–11 of the 4th period (Cr, Mn, Fe, Co, Ni and Cu) are effective for increasing the misfit, leading to increasing density of misfit dislocation and, in turn, higher yield strength and ductility. This effect is caused by the change in the lattice parameter of the γ-TiAl phase rather than those of α2-Ti3Al phase. This prediction agrees qualitatively with experimental data from a previous study although the effects of temperature are not taken into account. Further improvements should be possible by considering those effects. Nevertheless, the results highlight the effects of impurity addition on interfacial misfit at a level which cannot be achieved by classical concepts such as atomic size in a hard sphere model. The results will also be valuable in further more quantitative predictions and in understanding the effects of temperature, including off-stoichiometry, thermal expansion and vibration entropy.  相似文献   

15.
This paper presents a dislocation density-based non-Schmid constitutive model to address the anomalous thermo-mechanical behaviour of the L12 intermetallic single-crystal Ni3Al. Ni3Al is used as a strengthening precipitate (γ′ phase) in Ni-based superalloys. Addressing such anomalous behaviour by accounting for temperature-dependent flow stress and hardening evolution, as well as orientation-dependent tension–compression asymmetry, is necessary for modelling superalloys across a range of temperatures. While hardening in cube-slip systems results from statistically stored dislocations (SSDs), hardening in octahedral slip systems is due to both SSDs and cross-slip dislocations (CSDs). The constitutive model incorporates hardening evolution due to SSDs and CSDs. Experimental data for Ni3Al-type single crystals, available in the literature, are used to calibrate material parameters. Subsequently, results of crystal plasticity FEM simulations are compared with experimental data for several orientations under constant strain rate and creep loading conditions for a wide range of temperatures. The model is able to correctly predict the response of L12 intermetallic single crystals including features of anomalous flow stress and non-Schmid yield behaviour.  相似文献   

16.
In order to promote the performance of B2 NiAl by texture control of orientation during in situ processing, phase transformation in laminated NiAl with bimodal grain size distribution manufactured by reaction annealing of Ni and Al foils has been studied. It turned out that there existed a Kurdjumov–Sachs orientation relationship (K–S OR) between parent Ni and product NiAl by crystallography analysis according to the electron backscatter diffraction (EBSD) results. The parent Ni did not transform to the product NiAl directly but via the formation of Ni3Al firstly according to the transmission electron microscope (TEM) observation of the interface. This led to a new K–S OR between Ni3Al and NiAl with a small atomic misfit, which made less residual stress generated through the formation of Ni3Al than directly from the parent Ni.  相似文献   

17.
The mechanism of low-temperature deformation in a fracture process of L12 Ni3Al is studied by molecular dynamic simulations.Owing to the unstable stacking energy,the [01ˉ1] superdislocation is dissociated into partial dislocations separated by a stacking fault.The simulation results show that when the crack speed is larger than a critical speed,the Shockley partial dislocations will break forth from both the crack tip and the vicinity of the crack tip;subsequently the super intrinsic stacking faults are formed in adjacent {111} planes,meanwhile the super extrinsic stacking faults and twinning also occur.Our simulation results suggest that at low temperatures the ductile fracture in L12 Ni3Al is accompanied by twinning,which is produced by super-intrinsic stacking faults formed in adjacent {111} planes.  相似文献   

18.
张泽  吴玉琨  郭可信 《物理学报》1984,33(5):696-700
本文利用电子衍射及高分辨点阵象实验方法证实了Ni3(Tix,V1-x)合金系在铸态下存在有9R,10H,16H,20H,21H,44H等长周期结构以及2H结构。它们与体心四方基体相(结构与Ni3V相同)及六角基体相(结构与Ni3Ti相同)有固定取向关系:{001}长周期∥{001}(Ni3Ti)∥{112}Ni3V);〈100〉长周期∥〈100〉(Ni3Ti)∥〈110〉(Ni3V)。样品经长期高温退火处理后其它长周期结构均向9R结构转变。 关键词:  相似文献   

19.
The surface structure of the alkali-leached single-phase Ni3Al powder was investigated by X-ray diffraction, BET (Brunauer-Emmett-Teller) surface area analysis, electron microscopy, X-ray photoelectron spectroscopy, and temperature-programmed reduction. It was found that fine Ni particles of several nm in diameter were formed on the outer surface layer of the Ni3Al powder after the alkali leaching process. The surface of the Ni particles was covered with a thin layer of Ni oxides and hydroxide, Ni2O3, NiO and Ni(OH)2, and these Ni oxides and hydroxide can be easily reduced by hydrogen to the metallic nickel that is catalytically active. The inside of the Ni3Al powder remained as the original Ni3Al ordered structure after alkali leaching. Having heat resistant properties, the Ni3Al phase can serve as a support of the fine Ni particles and provide the structural and thermal stabilities to the fine Ni particles.  相似文献   

20.
The quantitative and temporal-evolutional advantages of the microscopic phase field are used to study the lattice defects of the L12–Ni3Al(γ′) phase in a ternary Ni–Al–V system. The temporal evolutional process of the occupancy of each individual atom conforms to classical nucleation processes, where the occupancy is constant at the incubation period, and then fluctuates up or down during segregation and equilibrium at the coarsening period. The α sublattice of the L12 structure is almost completely occupied by regular NiNi with a small amount of antisite defect AlNi and the substitutional defect VNi at the equilibrium state. By sharp contrast, the β sublattice is predominantly occupied by regular AlAl, as well as the non-negligible antisite defect NiAl and substitutional defect VAl. Regular atoms have a negative correlation with temperature; hence, the defects are positive. By comparison, the β sublattice, which accommodates most of the defects in Ni3Al, is more sensitive to temperature than the α sublattice. The results are generally in line with comparisons reported by other scientists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号