首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 113 毫秒
1.
高压氮气亚纳秒开关放电特性实验研究   总被引:11,自引:9,他引:2       下载免费PDF全文
 利用幅值约220 kV、脉宽约4 ns的高压纳秒脉冲源,对高压氮气亚纳秒气体开关放电特性进行了实验研究。实验结果表明:当气压在3~10 MPa间变化,间隔距离在0.6~1.2 mm间变化时,氮气间隙击穿电压随气压和间隙距离的增大而增大,并随气压的增大略呈饱和趋势,最高击穿电场约为2 MV/cm。开关输出电压波形的上升时间变化范围为145~190 ps,该上升时间随气压、击穿电场以及间隙距离增大而减小。  相似文献   

2.
高压氢气亚纳秒开关击穿特性   总被引:1,自引:1,他引:0       下载免费PDF全文
 在超宽谱脉冲产生辐射系统或脉冲功率源中,常用高压气体开关来产生快脉冲沿的高功率电磁脉冲。为了研究高压氢气亚纳秒开关的击穿特性,通过实验研究了氢气开关在高气压和短间隙距离条件下的击穿特性。开关输入脉冲的峰值幅度约220 kV,脉宽3~4 ns。氢气气压4~13 MPa,间隙距离0.4~1.2 mm。结果表明:开关击穿电压随气压升高而增加,且开关气压达到11 MPa后击穿电压随气压增加的趋势变缓;开关击穿电压随间距增加而增加,平均击穿场强随间距增加而减小,氢气开关平均击穿场强分布在3~7 MV/cm之间;开关导通时间随气压增加略有减小,随间隙距离增加有小幅增加。  相似文献   

3.
亚纳秒气体开关工作特性   总被引:2,自引:2,他引:0       下载免费PDF全文
 设计了3种结构的同轴Peaking-Chopping组合型亚纳秒气体开关,以半导体开路开关脉冲源为实验平台,分别对它们的击穿特性进行了实验研究。结果表明:亚纳秒气体开关采用环形组合电极Ⅱ时,可以在1~500 Hz稳定工作,输出前沿400 ps、后沿320 ps、脉冲宽度460 ps和电压129.2 kV的脉冲。开关输出脉冲的前后沿、脉冲宽度和电压幅度与开关间隙、气压和重复频率等因素有关,亚纳秒气体开关在小间隙(1~2 mm)、高气压(约10 MPa)时具有良好的重频特性。在开关气压和输入脉冲幅度不变时,输入脉冲上升沿越快,开关的击穿时延越小,击穿电压越高。  相似文献   

4.
在工作气压和火花间隙固定的条件下,针对稍不均匀场的圆饼形电极开关开展了不同电极材料下开关自击穿实验,开关间隙距离为5mm,工作气压为0.25 MPa,击穿电压平均值为40kV。分别选取了不锈钢、黄铜、钨铜合金和石墨材料作为实验对象,对比了不同电极材料下电极质量损失、电极表面形貌和开关静态特性的差异。实验结果表明,石墨电极质量损失速率略高于金属电极,但是由于石墨电极烧蚀产物多为气体,因此石墨电极绝缘子污染程度远小于金属电极。石墨电极开关在低欠压比下自击穿概率也远小于金属电极开关。三种金属电极开关,其静态特性差异不大,但钨铜电极烧蚀程度显著低于不锈钢和黄铜电极开关。  相似文献   

5.
介绍了一种多间隙轨道式气体开关的结构及其自击穿实验研究结果。通过对开关放电的理论分析,并结合实验数据,获得一个适合该开关自击穿工作特性的表达式。研究结果发现, 在高气压条件下,开关静态特性曲线与空气击穿的经验式曲线存在较大的差别,并且击穿电压随气压增加并不完全呈线性变化。经过对实验条件和数据的分析,认为在高气压、高电压条件下,电极表面形成的电晕可能是导致该开关静态特性曲线出现此现象的原因。由于开关的特殊结构,电极电晕不仅未起到均压的作用,反而减小了电极之间有效的绝缘距离,从而导致开关自击穿电压实验值与经验理论值的偏离。  相似文献   

6.
为了减小脉冲功率源装置的体积, 对三电极气体开关和两电极气体开关的结构进行了小型化设计。采用电磁场仿真软件对局部结构进行优化, 对初步设计的触发开关和自击穿开关在不同SF6气压(0~0.2 MPa)、不同开关间隙条件下的击穿电压及触发工作电压等进行了实验研究。结果表明:设计的触发开关和自击穿开关在0~0.2 MPa气压范围内, 自击穿电压随气压具有很好的线性关系; 自击穿开关间隙为8 mm, 改变气压(0.1~0.2 MPa)可实现自击穿电压90~125 kV可调; 触发开关主间隙为7 mm, 改变气压(0.1~0.2 MPa)可实现触发工作电压40~95 kV 可调; 初步估算, 触发开关和自击穿开关的工作电感均约20 nH。利用重频脉冲电源, 测试了开关的重频工作能力, 在工作电压80 kV、导通电流约20 kA的条件下, 重复工作频率在20 Hz以上。此外, 利用研制的开关构建了八级紧凑型Marx发生器, 实现了5和10 Hz重频多脉冲输出。  相似文献   

7.
针对快放电直线脉冲变压器驱动源初级储能开关,调节开关气压,进行相同自击穿电压下不同间隙长度的开关自击穿实验。通过监测自击穿电压分布规律变化,研究开关间隙长度对开关自击穿特性的影响。结果表明,当开关间隙长度较大时,电极表面粗糙度较小,表明电极烧蚀程度较低。开关间隙长度为6 mm时,开关自击穿电压分散性达到最小,自击穿电压分布符合高斯函数,间隙长度大于6 mm时自击穿电压分布符合极限函数。适当增加开关间隙长度使自击穿电压分布失去对称性,有利于开关在低欠压比下获得更好的静态性能。针对电极结构,选择开关间隙长度为6~9 mm时能够获得最佳的静态性能。初步分析,引起开关自击穿电压分布发生改变的原因是电场强度的改变对阴极电子发射产生了影响。  相似文献   

8.
张明康  刘轩东  沈曦  梁成军 《强激光与粒子束》2019,31(12):125003-1-125003-6
利用内嵌微孔火花放电产生喷射等离子体、作用于两电极开关,研究了间隙距离、气压、气体种类、开关工作系数和电压极性配合等因素对等离子体喷射控制开关导通特性的影响。实验结果表明,等离子体喷射触发开关可在工作系数为10%的条件下可靠快速导通,当开关采用0.5 MPa_N2作为绝缘介质、间隙距离5 mm时,触发导通时延为11.7 μs,抖动为1.42 μs;当间隙距离增大到18 mm时,触发导通时延增大至19.7 μs,触发可靠性降低;当工作系数由10%增大到60%时,触发导通时延由11.7 μs降低至1.1 μs。在确保开关自击穿电压一致的前提下,短间隙、高气压、负触发脉冲电压、正工作电压更有利于减小开关触发导通时延。  相似文献   

9.
多间隙气体开关紫外光预电离结构   总被引:3,自引:2,他引:1       下载免费PDF全文
 针对一种用于快前沿直线脉冲变压器驱动源的多间隙气体开关,设计了针式和孔式两种预电离触发结构,获得了两种预电离结构下开关的自击穿特性和触发特性。实验结果表明:增加预电离针后,开关静态特性没有明显变化,开关自击穿电压平均值变化幅度小于3%;开关触发特性明显改善,开关工作电压150 kV、触发电压60 kV时,触发抖动减小约20%,触发阈值降低5~10 kV。对于针式预电离结构,实验研究了不同触发电压、工作气压、电离间隙距离时紫外光强度的变化规律,结果表明在电离间隙距离1.5~3.0 mm时,开关触发抖动小于2.0 ns,预电离效果明显。  相似文献   

10.
针对800 kA,0.1 Hz重复频率LTD模块设计新的多间隙气体开关,要求在较高工作电压(高于80 kV)和较低工作系数(低于70%)下抖动优于2 ns。通过电场仿真分析,优化了气体开关电极形状。串联间隙从4个增加为6个,总间隙长度为36 mm,充电100 kV、触发100 kV时触发间隙场畸变系数为3.98。实验表明,新气体开关静态自击穿性能稳定,动态触发性能可靠。充电90 kV、工作系数60%时击穿延时40.1 ns,抖动1.3 ns。  相似文献   

11.
The transition of a runaway-electron-induced diffuse discharge initiated in a nonuniform electric field under a high pressure of air and nitrogen to a spark is studied. High-voltage pulses with a rise time of 0.5 ns are applied to a discharge gap with a tubular cathode having a small radius of curvature. It is shown that the leader of the spark discharge propagates toward the tubular cathode along preproduced tracks and may pass from one track to another. For a pulse rise time of about 0.5 ns and a gap length of 12 mm or more, it is found that spark leaders originating at the cathode (which has a small radius of curvature) do not reach the anode and accordingly, do not cause the spark breakdown of the gap. It is confirmed that the spark breakdown of the gap is associated with a spark leader that moves away from the plane electrode after the appearance of a bright spot on it.  相似文献   

12.
平面火花隙三电极开关研制及性能测试   总被引:3,自引:2,他引:1       下载免费PDF全文
 研制了一种适用于平行板传输连接的平面火花隙三电极开关,开关正负电极为半圆形状,触发电极为细条状。将之替代立体式(半球形电极)火花隙三电极开关并应用于爆炸箔起爆装置中,装置回路参数将得以优化。实验测试了空气间隙为4.12, 3.14和2.2 mm的平面火花隙三电极开关的性能。结果表明,在开关间隙间距一定的情况下,随着电压的升高,开关间隙的放电时延和分散时间呈指数降低,开关电感小于15 nH;对于不同范围内的应用电压,使用不同间隙间距的开关,其分散时间不大于10 ns。该开关应用于较低充电电压(小于10 kV)的脉冲功率装置中,与立体式火花隙三电极开关相比,回路电感降低了约50 nH,放电周期缩短近1/3,峰值电流增加约1/3。  相似文献   

13.
低抖动三电极火花开关的研制   总被引:1,自引:0,他引:1       下载免费PDF全文
对影响三电极火花开关分散性的诸因素进行了分析。研制的低抖动三电极火花开关选用了N2气体,主电极形状为球冠形,触发电极形状为棱形,电极材料为黄铜,对结构进行了优化。并测试了不同气压及电压条件下开关的分散性,获得了开关抖动小于2ns的结果。  相似文献   

14.
三电极气体火花开关带有触发极,相比两电极开关,其开关导通的可控性较高,工作电压较低且抖动小,所以气体火花开关中三电极开关的应用较为广泛.本文针对大气压氮气环境下的两电极开关和三电极开关的击穿机制进行了理论与数值模拟研究.通过理论和数值计算发现,对于平板-平板的两电极开关来说,低电压下(小于6.3 kV)无法产生流注击穿,高电压下(大于6.3 kV)会先形成由阴极到阳极的负流注,然后再形成由阳极向阴极的正流注.而在三电极开关的击穿过程中,首先会在触发极和绝缘体之间发生击穿,然后这个通道不断向阴阳极扩展,最终形成阴阳极之间的电弧通道.在本文的计算工况下,如果需要阴极-触发极、阳极-触发极同时击穿的话,其阴极-触发极之间的外加电压需要大于1.18 kV,而阳极-触发极之间的外加电压需要大于3 kV.当考虑触发极的场致发射后,该击穿阈值可以显著降低.  相似文献   

15.
介绍了14支路并联的300 kA百ns直线型变压器驱动源单级模块的结构和关键部件。模块通过采用双端引出电极电容器以及小型多间隙串联气体火花开关,可以并联更多的支路数,减小回路电感,提高储能密度;通过采用非晶磁芯,减小磁芯损耗,提高模块耦合效率。实验研究了初级气体开关工作系数对模块输出的影响,实验结果表明:模块开关电压工作系数达到0.7,多间隙串联开关才能较好同步放电;给出了快直线型变压器模块的初步调试实验结果,在模块充电90 kV,开关气压0.32 MPa情况下,匹配负载电流峰值可达到302 kA,上升时间约100 ns,负载上获得的峰值功率为23 GW。  相似文献   

16.
 对影响三电极火花开关分散性的诸因素进行了分析。研制的低抖动三电极火花开关选用了N2气体,主电极形状为球冠形,触发电极形状为棱形,电极材料为黄铜,对结构进行了优化。并测试了不同气压及电压条件下开关的分散性,获得了开关抖动小于2ns的结果。  相似文献   

17.
利用超高速相机,在曝光时间100 ns时,对不同能量下激光在氮气气体开关中形成的火花通道进行拍照,得到了不同焦距下激光波长266 nm时激光火花通道长度与激光能量的关系。开展了激光触发气体火花开关的实验研究,激光触发开关延时、抖动随激光能量的增加而减小。将火花通道长度与激光触发开关的特性进行了分析,气体开关的抖动随着激光火花通道长度的增加而减小,当火花通道沿电极间轴向长度达到开关电极间距40%时,开关的抖动为亚ns量级。  相似文献   

18.
300 kV/3 ns脉冲电压源的研制   总被引:4,自引:1,他引:4       下载免费PDF全文
 研制了一台300 kV/3 ns快前沿脉冲电压源。为了得到快的前沿,设计了低电感的峰化电容和输出开关。其中峰化电容采用3个薄膜电容同轴串联设计,结构紧凑,分布电感小,电极端部的气隙结构使其能承受更高的脉冲高压,实验证明这种结构的峰化电容能承受前沿17 ns、峰值大于300 kV的脉冲高压。输出开关采用高气压小间隙SF6开关,最高工作气压1 MPa,具有较小的分布电感和火花通道电感。经实验调试,由该峰化电容和输出开关组成的峰化回路在500 kV Marx发生器的驱动下,在150 Ω负载上可得到峰值电压大于300 kV、前沿小于3 ns的脉冲电压输出。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号