首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
制备了核-壳结构的ZnS∶Cu/ZnS纳米粒子以及普通的没有壳的Cu2 掺杂的ZnS纳米粒子,研究了ZnS无机壳层对ZnS∶Cu纳米粒子发光性质的影响。透射电子显微镜、激发光谱和发射光谱的研究表明,后加入的Zn2 离子在已经形成的ZnS核表面生长,形成ZnS壳层;而适当厚度的ZnS壳层可以钝化粒子表面,减少无辐射复合中心的数目,抑制表面态对发光的不利影响,提高ZnS∶Cu纳米粒子中Cu2 离子在450 nm左右的发光强度。  相似文献   

2.
核-壳结构的ZnS:Mn纳米粒子的荧光增强   总被引:6,自引:1,他引:5  
采用反胶束方法制备了ZnS :Mn纳米粒子并对其进行了ZnS壳层修饰 ,采用发射光谱和激发光谱对其光学性质进行了研究。与未包覆的ZnS:Mn纳米粒子相比 ,核 壳结构的ZnS :Mn纳米粒子来自于Mn2 离子的 5 80nm的发光增强了数倍 ,归因于ZnS壳增加了Mn2 离子到纳米颗粒表面的距离 ,减弱了Mn2 离子向表面猝灭中心的传递。样品制备后 ,核 壳结构的ZnS :Mn纳米粒子在 5 80nm的发光随时间略有增强 ,激发光谱的位置未发生明显变化 ,而未包覆的ZnS:Mn纳米粒子在 5 80nm的发光显著增强 ,同时自激活发光减弱 ,激发光谱明显发生红移 ,说明未包覆的ZnS :Mn纳米粒子的尺寸随时间增大 ,而核 壳结构的ZnS :Mn纳米粒子尺寸基本不变。  相似文献   

3.
采用溶剂热法制备了Mn离子掺杂的ZnS纳米粒子(ZnS∶Mn),然后利用正硅酸乙酯(TEOS)的水解反应对其进行了不同厚度的SiO2无机壳层包覆。采用X射线衍射(XRD)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)及荧光发射光谱(PL)对样品的结构及光学性质进行了表征和研究。包覆SiO2壳层后,粒子的粒径明显增大并且在ZnS∶Mn纳米粒子表面可以观察到明显的SiO2壳层。XPS测试印证了ZnS∶Mn/SiO2的核壳结构。随着SiO2壳层的增厚,ZnS∶Mn/SiO2的Mn离子的发光先增强后减弱,这是因为SiO2壳层同时具有表面修饰和降低发光中心浓度这两种相反的作用。当壳层厚度(壳与核的物质的量的比)达到5时,发光效果达到最好,其强度达到未包覆样品的7.5倍。  相似文献   

4.
田昕  曹立新  柳伟  苏革  董博华 《发光学报》2012,33(7):736-741
本文采用水相合成方法制备了ZnS∶Cu量子点并进行了ZnS壳层修饰,研究了壳层厚度对ZnS∶Cu量子点光学性质的影响,采用TEM、XRD、PL、PLE和UV-Vis等测试方法对其进行了表征。实验结果表明,合成的ZnS∶Cu/ZnS量子点为立方闪锌矿,尺寸分布均匀呈球形,分散性良好,经过壳层修饰平均粒径由2 nm增加到3.2 nm。随着ZnS壳与ZnS核量的比的增加,量子点的PLE激发峰位置和UV-Vis吸收谱线出现红移,也说明了量子点的尺寸增大,证明ZnS在ZnS∶Cu量子点的表面生长,形成了核壳结构的ZnS∶Cu/ZnS量子点。随着壳层增厚,量子点与铜离子发光中心相关的发射峰强度先增大后减小,当壳核比ns/nc=2.5时,发光强度达到最大。  相似文献   

5.
核/壳结构ZnS : Mn/CdS纳米粒子的制备及发光   总被引:1,自引:1,他引:0       下载免费PDF全文
利用溶剂热法制备了Mn离子掺杂的ZnS纳米粒子(ZnS : Mn),利用沉淀法对ZnS ∶ Mn纳米粒子进行了不同厚度的CdS无机壳层包覆。采用X射线衍射(XRD)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)及光致发光(PL)光谱等手段对样品进行了表征。TEM显示粒子为球形,直径大约在14~18 nm之间。由XRD结果可以看出CdS壳层的形成过程受到了ZnS ∶ Mn核的影响,导致其结晶较差。XRD和XPS测量证明了ZnS : Mn/CdS的核壳结构。随着CdS壳层的增厚,样品的发光强度呈现一直减弱的现象。  相似文献   

6.
核壳结构CdS/ZnS纳米微粒的制备与光学特性   总被引:6,自引:0,他引:6  
用微乳液法制备CdS纳米微粒 ,以ZnS对其进行表面修饰 ,得到具有核壳结构的CdS/ZnS纳米微粒 .采用X射线衍射 (XRD)、透射电镜 (TEM )表征其结构、粒度和形貌 ,紫外 可见吸收光谱 (UV)、光致发光光谱(PL)表征其光学特性 .制得的CdS近似呈球形 ,直径为 3.3nm ;以XRD和UV证实了CdS/ZnS核壳结构的实现 .研究了不同ZnS壳层厚度对CdS纳米微粒光学性能的影响 ,UV谱表明随着壳层厚度的增加纳米微粒的吸收带边有轻微的红移 ,同时短波吸收增强 ;PL谱表明壳层ZnS的包覆可减少CdS纳米微粒的表面缺陷 ,带边直接复合发光的几率增大 ,具有合适的壳层厚度时发光效率大大提高 .  相似文献   

7.
利用热注射法通过调控Cu/Zn比例制备了不同组分的Cu-Zn-In-S/ZnS核壳量子点,通过紫外-可见吸收光谱以及稳态和时间分辨光谱分析Cu/Zn比例对量子点发光性能的影响.结果表明,不同组分Cu-Zn-In-S/ZnS核壳量子点呈现闪锌矿结构且晶粒尺寸接近;随着Cu/Zn比例的减小,Cu-Zn-In-S/ZnS核壳量子点的带隙变宽,导致吸收光谱发生蓝移;当Cu/Zn比例从6/1减小到1/6时,量子点的发光峰位从640nm蓝移529nm.由于Zn2+替代Cu+能够减少Cu原子缺陷的形成,从而提高了量子点的荧光效率;当Cu/Zn=1/6时,样品中观测到Cu+离子发光和较长的荧光寿命.  相似文献   

8.
采用超声化学沉积法制备了ZnS:Mn2+/聚苯乙烯核壳结构和ZnS:Mn2+空心球.产物分别用透射电镜、X射线衍射仪和光致发光谱进行了表征.透射电镜结果表明,在聚苯乙烯胶体微球表面覆盖了平均尺寸为9nm的ZnS:Mn2+纳米颗粒,X射线衍射结果进一步验证了这个结论.将核壳粒子在500℃灼烧除去PS核后,可以得到空心的ZnS:Mn2+微球,Mn2+的发射谱的峰位在540nm,与体相材料相比,蓝移了45nm,这可能是由于壳层结构引起Mn-O八面体畸变,进而导致能带结构变化引起的.  相似文献   

9.
采用溶胶法制备了Mn掺杂的ZnS纳米粒子,探讨了掺杂离子浓度对ZnS∶Mn纳米粒子的晶体结构和发光性质的影响。通过X射线衍射(XRD)对样品的结构进行了表征,结果表明:所制备的ZnS∶Mn纳米粒子为立方闪锌矿结构,其在Mn离子的掺杂浓度达到6%时不发生分相,但随着掺杂浓度的增加,纳米粒子的平均粒径会减小。光致发光光谱和荧光光谱的结果表明:通过改变掺杂离子的浓度可实现对ZnS∶Mn纳米粒子590 nm附近荧光发射波长的调节。此外,研究了温度对纳米粒子形貌和发光性质的影响。高分辨透射电子显微镜(HRTEM)观察发现,经过50℃陈化1 h后的ZnS∶Mn样品的平均粒径增大约为20 nm,且加热陈化有利于ZnS∶Mn纳米粒子中Mn2+在590 nm处产生荧光。  相似文献   

10.
CuInS2纳米晶的制备和发光性质   总被引:3,自引:3,他引:0       下载免费PDF全文
以十二硫醇为溶剂,通过选择合适的金属源制备了各种尺寸的CuInS2量子点。观察到随着粒子的尺寸减小,其吸收和发光光谱明显蓝移,存在明显的量子尺寸效应。通过在CuInS2纳米晶表面包覆ZnS壳层,发现随着壳层厚度增加,其发光量子效率明显提高,最大达到了48%;继续增加壳层厚度,其发光量子效率反而降低。进一步测量它们的荧光寿命,发现包覆ZnS壳层后的CuInS2纳米晶的荧光寿命明显增加,证实表面包覆明显减少其表面的无辐射复合中心,提高了其发光效率。进一步制备了CuInS2/ZnS核壳量子点发光二极管,并对其电致发光性质进行了研究。  相似文献   

11.
以高纯ZnS粉末为基质,采用高温转相、扩散,以及表面涂敷工艺,制得了147Pm激发的ZnS:Cu,Cl发光粉。分析了ZnS:Cu,Cl的晶体结构,测量了ZnS:Cu,Cl的激发光谱、发射光谱、发光亮度。其晶体结构主要是六方纤锌矿型结构,激发光谱峰值波长为341nm,发射光谱峰值波长为513nm,初始发光亮度达到312mcd/m2。由激发光谱的峰值波长341nm推算得到六方ZnS晶体的禁带宽度为3.64eV。分析了147Pm激发的ZnS:Cu,Cl发光粉的发光寿命,其发光寿命达到5年以上。还探讨了该放射性发光粉的发光机理。147Pm激发的ZnS:Cu,Cl的稳定发光,实际上是激发过程与复合过程的准平衡。ZnS:Cu,Cl的绿色发光来源于深施主-深受主对的复合发射。实验结果的分析表明,ZnS:Cu,Cl中深施主-深受主之间的能级间隔约为2.42eV。  相似文献   

12.
ZnS:Cu+ and ZnS:Cu2+ nanocrystallites have been obtained by chemical precipitation from homogeneous solutions of zinc, copper salt compounds, with S2− as precipitating anion formed by decomposition of thioacetamide. X-ray diffraction (XRD) analysis shows that average diameter of particles is about 2.0-2.5 nm. The nanoparticles can be doped with copper during synthesis without altering XRD pattern. However, the emission spectrum of ZnS nanocrystallites doped with Cu+ and Cu2+ consists of two emission peaks. One is at 450 nm and the other is at 530 nm. The absorptive spectrum of the doped sample is different from that of un-doped ZnS nanoparticles. Because the emission process of the Cu+ luminescence center in ZnS nanocrystallites is remarkably different from that of the Cu2+ luminescence center, the emission spectra of Cu+-doped samples are different from those of Cu2+-doped samples.  相似文献   

13.
The photoluminescence (PL) of ZnS:Mn nanocrystals was improved greatly by microwave assisted growth of ZnS shell. Under optimized conditions, the luminescence quantum yield of ZnS:Mn nanocrystals increased from 2.8% to 12.1% after the growth of the ZnS shell. Time-resolved fluorescence spectroscopic and electron paramagnetic resonance measurements indicate that the improvement of the dispersivity of the doped Mn ions is responsible for the PL enhancement. Growth of the ZnS shell not only facilitated the diffusion of Mn ions during microwave irradiation but also prohibited the segregation of Mn ions on the particle surface. As a result, more isolated Mn2+ ions were produced after the growth of the ZnS shell, and thus the orange luminescence of ZnS:Mn nanocrystals was enhanced greatly.  相似文献   

14.
二价铕激活的ZnS磷光体的发光   总被引:5,自引:1,他引:4  
李文连  王庆荣 《发光学报》1989,10(4):311-318
本文详细描述了ZnS:Eu2+磷光体的合成及光致发光性能。首次报导了这种发光材料的特殊长余辉特性。作者测量了热释发光光谱、不同温度下的发射特性的变化及荧光的激发、发射衰减时间,提出两类缔合Eu中心的模型。用不同的缔合Eu中心较好地解释了它的光谱特性及长余辉现象,认为光谱的两个发射带来自不同的缔合Eu中心,即550nm发射带对与ZnS导带电子陷阱相缔合的Eu中心有关,650nm带来自与电子陷阱和空穴陷阱缔合的Eu中心。发射的余辉主要与导带中某种电源电子陷阱存在有关。此外,本文还对与应用有关的阴极射线发光性能进行了报导。  相似文献   

15.
Mn-doped ZnS nanocrystals prepared by solvothermal method have been successfully coated with different thicknesses of Zn(OH)2 shells through precipitation reaction. The impact of Zn(OH)2 shells on luminescent properties of the ZnS:Mn nanocrystals was investigated. X-ray diffraction (XRD) measurements showed that the ZnS:Mn nanocrystals have cubic zinc blende structure. The morphology of nanocrystals is spherical shape measured by transmission electron microscopy (TEM). ZnS:Mn/Zn(OH)2 core/shell nanocrystals exhibited much improved luminescent properties than those of unpassivated ZnS:Mn nanocrystals. The luminescence enhancement was observed with the Zn(OH)2 shell thickening by photoluminescence (PL) spectra at room temperature and the luminescence lifetime of transition from 4T1 to 6A1 of Mn2+ ions was also prolonged. This result was led by the effective, robust passivation of ZnS surface states by the Zn(OH)2 shells, which consequently suppressed nonradiative recombination transitions.  相似文献   

16.
Synthesis and photoluminescence characteristics of doped ZnS nanoparticles   总被引:3,自引:0,他引:3  
Free-standing powders of doped ZnS nanoparticles have been synthesized by using a chemical co-precipitation of Zn2+, Mn2+, Cu2+ and Cd2+ with sulfur ions in aqueous solution. X-ray diffraction analysis shows that the diameter of the particles is ∼2–3 nm. The unique luminescence properties, such as the strength (its intensity is about 12 times that of ZnS nanoparticles) and stability of the visible-light emission, were observed from ZnS nanoparticles co-doped with Cu2+ and Mn2+. The nanoparticles could be doped with copper and manganese during the synthesis without altering the X-ray diffraction pattern. However, doping shifts the luminescence to 520–540 nm in the case of co-doping with Cu2+ and Mn2+. Doping also results in a blue shift on the excitation wavelength. In Cd2+-doped ZnS nanometer-scale particles, the fluorescence spectra show a red shift in the emission wavelength (ranging from 450 nm to 620 nm). Also a relatively broad emission (ranging from blue to yellow) has been observed. The results strongly suggest that doped ZnS nanocrystals, especially two kinds of transition metal-activated ZnS nanoparticles, form a new class of luminescent materials. Received: 16 October 2000 / Accepted: 17 October 2000 / Published online: 23 May 2001  相似文献   

17.
Temperature dependent luminescence and luminescence lifetime measurements are reported for nanocrystalline ZnS:Cu2+ particles. Based on the variation of the emission wavelength as a function of particle size (between 3.1 and 7.4 nm) and the low quenching temperature (Tq=135 K), the green emission band is assigned to recombination of an electron in a shallow trap and Cu2+. The reduction in lifetime of the green emission (from 20 μs at 4 K to 0.5 μs at 300 K) follows the temperature quenching of the emission. In addition to the green luminescence, a red emission band, previously only reported for bulk ZnS:Cu2+, is observed. The red emission is assigned to recombination of a deeply trapped electron and Cu2+. The lifetime of the red emission is longer (about 40 μs at 4 K) and the quenching temperature is higher.  相似文献   

18.
Cysteine stabilized ZnS and Mn2+-doped ZnS nanoparticles were synthesized by a wet chemical route. Using the ZnS:Mn2+ nanoparticles as seeds, silica-coated ZnS (ZnS@Si) and ZnS:Mn2+ (ZnS:Mn2+@Si) nanocomposites were formed in water by hydrolysis and condensation of tetramethoxyorthosilicate (TMOS). The influence of annealing in air, formier gas, and argon at 200-1000 °C on the chemical stability of ZnS@Si and ZnS:Mn2+@Si nanoparticles with and without silica shell was examined. Silica-coated nanoparticles showed an improved thermal stability over uncoated particles, which underwent a thermal combustion at 400 °C. The emission of the ZnS@Si and ZnS:Mn2+@Si passed through a minimum in photoluminescence intensity when annealed at 600 °C. Upon annealing at higher temperatures, ZnS@Si conserved the typical emission centered at 450 nm (blue). ZnS:Mn2+@Si yielded different high intensity emissions when heated to 800 °C depending on the gas employed. Emissions due to the Mn2+ at 530 nm (green; Zn2SiO4:Mn2+), 580 nm (orange; ZnS:Mn2+@Si), and 630 nm (red; ZnS:Mn2+@Si) were obtained. Therefore, with a single starting product a set of different colors was produced by adjusting the atmosphere wherein the powder is heated.  相似文献   

19.
No known reports exist on luminescence enhancement under polarized light excitation. In this study, ZnS nanocrystals have been observed to produce brighter luminescence when excited by polarized light. ZnS:Mn bulk and nanocrystals have shown fivefold to tenfold increase in photoluminescence (PL) intensity when excited with linearly polarized light at 305 nm and 340 nm. Luminescence enhancement to a lesser degree was observed with linearly polarized light excitation for ZnS:Cu, Al and ZnS:Ag, Al nanocrystals. The observations suggest emission intensity dependence on the degree of anisotropy, which could be correlated mainly with the symmetry of the luminescence center and also to a lesser extent with nanoparticle shape asymmetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号