首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Binary Al–Ni, Al–Mg and ternary Al–Mg–Ni alloys containing various dispersions and volume fraction of second-phase particles of crystallisation origin were compressed in a temperature range of 200–500 °C and at strain rates of 0.1, 1, 10, 30 s?1 using the Gleeble 3800 thermomechanical simulator. Verification of axisymmetric compression tests was made by finite-element modelling. Constitutive models of hot deformation were constructed and effective activation energy of hot deformation was determined. It was found that the flow stress is lowered by decreasing the Al3Ni particle size in case of a low 0.03 volume fraction of particles in binary Al–Ni alloys. Intensive softening at large strains was achieved in the alloy with a 0.1 volume fraction of fine Al3Ni particles. Microstructure investigations confirmed that softening is a result of the dynamic restoration processes which were accelerated by fine particles. In contrast, the size of the particles had no influence on the flow stress of ternary Al–Mg–Ni alloy due to significant work hardening of the aluminium solid solution. Atoms of Mg in the aluminium solid solution significantly affect the deformation process and lead to the growth of the effective activation energy from 130–150 kJ/mol in the binary Al–Ni alloys to 170–190 kJ/mol in the ternary Al–Mg–Ni alloy.  相似文献   

2.
Particle-tracking analysis (PTA) in combination with systematic imaging, automatic image analysis, and automatic data processing is validated for size measurements. Transmission electron microscopy (TEM) in combination with a systematic selection procedure for unbiased random image collection, semiautomatic image analysis, and data processing is validated for size, shape, and surface topology measurements. PTA is investigated as an alternative for TEM for the determination of the particle size in the framework of the EC definition of nanomaterial. The intra-laboratory validation study assessing the precision and accuracy of the TEM and PTA methods consists of series of measurements on three gold reference materials with mean area-equivalent circular diameters of 8.9 nm (RM-8011), 27.6 nm (RM-8012), and 56.0 nm (RM-8013), and two polystyrene materials with modal hydrodynamic diameters of 102 nm (P1) and 202 nm (H1). By obtaining a high level of automation, PTA proves to give precise and non-biased results for the modal hydrodynamic diameter in size range between 30 and 200 nm, and TEM proves to give precise and non-biased results for the mean area-equivalent circular diameter in the size range between 8 and 200 nm of the investigated near-monomodal near-spherical materials. The expanded uncertainties of PTA are about 9 % and are determined mainly by the repeatability uncertainty. This uncertainty is two times higher than the expanded uncertainty of 4 % obtained by TEM for analyses on identical materials. For the investigated near-monomodal and near-spherical materials, PTA can be used as an alternative to TEM for measuring the particle size, with exception of 8.9 nm gold, because this material has a size below the detection limit of PTA.  相似文献   

3.
In this study, we evaluated the combined effect of a known toxic molecule, cisplatin, in combination with relatively nontoxic nanoparticles, amorphous fumed silica, on chondrocyte cells. Cisplatin was attached to silica nanoparticles using aminopropyltriethoxy silane as a linker molecule, and characterized in terms of size, shape, specific surface area, as well as the dissolution of cisplatin from the silica surface. The primary particle diameter of the as-received silica nanoparticles ranged from 7.1 to 61 nm, estimated from measurements of specific surface area, and the primary particles were aggregated. The effects of cisplatin-functionalized silica particles with different specific surface areas (41, 85, 202, 237, and 297 m2/g) were compared in vitro on chondrocytes, the parenchymal cell of hyaline cartilage. The results show that adverse effects on cell function, as evidenced by reduced metabolic activity measured by the MTT assay and increased membrane permeability observed using the Live/Dead stain, can be correlated with specific surface area of the silica. Cisplatin-functionalized silica nanoparticles with the highest specific surface area incited the greatest response, which was almost equivalent to that induced by free cisplatin. This result suggests the importance of particle specific surface area in interactions between cells and surface-functionalized nanomaterials.  相似文献   

4.
Nearly monodisperse, well crystalline, superparamagnetic CoFe2O4 nanoparticles with diameter of 6 nm were synthesized in oleic acid–water–pentanol system at 180 °C. Hydrothermal procedure, as an efficient and environment friendly alternative to organic decomposition methods, was investigated by variation of reaction conditions, and the particle formation mechanism was finally proposed (i.e., hydrolysis of metal oleates in organic phase, with size of the particles (5–8 nm) controlled by polarity-driven precipitation into water phase). As-prepared particles were hydrophobic due to coating by oleic acid. Further modification with dimercaptosuccinic acid led to water-dispersible particles with hydrodynamic diameter of 20 nm. Prepared particles were investigated by TEM, XRD, ICP-AES, light scattering, SQUID magnetometry, and Mössbauer spectroscopy.  相似文献   

5.
Cerium-doped calcium sulphide nanoparticles were synthesized using the solid state diffusion method. The formed nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-visible absorption spectroscopy and photoluminescence (PL) spectroscopy. The XRD pattern confirmed a cubic CaS phase with an average grain size of 53 nm of the formed samples. The TEM image showed non-agglomerated particles with an average size of 60 nm, which is in close agreement with the XRD result. The PL-emission spectrum showed peaks at 506 and 565 nm due to the transition from the excited state to the ground state of Ce3+. The effect of etching has been studied on the luminescent properties of CaS:Ce phosphors. With an increase in the etching time there is decrease in the size of the particles, as a result of which the PL spectrum showed a slight blue shift. The UV-visible absorption spectrum also showed a blue shift with an increase in etching time, which is in agreement with the nanosize effect.  相似文献   

6.
Laser-based additive manufacturing has attracted much attention as a promising 3D printing method for metallic components in recent years. However, surface roughness of additive manufactured components has been considered as a challenge to achieve high performance. In this work, we demonstrate the capability of fiber laser in polishing rough surface of additive manufactured Ti-based alloys as Ti-6Al-4V and TC11. Both as-received surface and laser-polished surfaces as well as cross-section subsurfaces were analyzed carefully by White-Light Interference, Confocal Microscope, Focus Ion Beam, Scanning Electron Microscopy, Energy Dispersive Spectrometer, and X-ray Diffraction. Results revealed that as-received Ti-based alloys with surface roughness more than 5 µm could be reduce to less than 1 µm through laser polishing process. Moreover, microstructure, microhardness and wear resistance of laser-polished zone was investigated in order to examine the thermal effect of laser polishing processing on the substrate of additive manufactured Ti alloys. This proof-of-concept process has the potential to effectively improve the surface roughness of additive manufactured metallic alloy by local polishing method without damage to the substrate.  相似文献   

7.
This paper reports on the dispersion stability of 150 nm polyvinyl alcohol coated biochar nanoparticles in brine water. Biochar is a renewable, carbon based material that is of significant interest for enhanced oil recovery operations primarily due to its wide ranging surface properties, low cost of synthesis, and low environmental toxicity. Nanoparticles used as stabilizing agents for foams (and emulsions) or in nanofluids have emerged as potential alternatives to surfactants for subsurface applications due to their improved stability at reservoir conditions. If, however, the particles are not properly designed, they are susceptible to aggregation because of the high salinity brines typical of oil and gas reservoirs. Attachment of polymers to the nanoparticle surface, through covalent bonds, provides steric stabilization, and is a necessary step. Our results show that as the graft density of polyvinyl alcohol increases, so too does the stability of nanoparticles in brine solutions. A maximum of 34 wt% of 50,000 Da polyvinyl alcohol was grafted to the particle surface, and the size of the particles was reduced from ~3500 nm (no coating) to 350 nm in brine. After 24 h, the particles had a size of ~500 nm, and after 48 h completely aggregated. 100,000 Da PVA coated at 24 wt% on the biochar particles were stable in brine for over 1 month with no change in mean particle size of ~330 nm.  相似文献   

8.
We propose nanosphere propulsion by using femtosecond laser-excited enhanced near field based on the theoretical calculations and experimental study. The optical intensity distribution and enhancement around a gold nanosphere on a silicon substrate was simulated by a 3D finite-difference time-domain method. The sphere velocities and propelled angles were calculated based on the optical intensity distribution. In our simulation, we calculated the optical intensity for the gold nanospheres with a diameter ranging from 100 to 600 nm. Calculation results show that the sphere velocity was fairly constant for the diameters ranging from 100 to 250 nm, while the velocity decreased for diameters larger than 250 nm. The propelled angle could be controlled up to only 4.6° by varying the incident angles of p-polarized waves. We have demonstrated the gold nanosphere propulsion in experiment. The gold nanospheres with a diameter of 200 nm were used in our experiments. The propelled gold particles have been melted by laser irradiation and deposited on the receiver substrate. The size and spatial distributions of gold particles have been investigated. The decrease in the laser spot size and the gap distance between the donor and receiver substrate would realize the reduction in the existence region of gold particles on the receiver substrate.  相似文献   

9.
In this study, the physicochemical properties of several commercial ultrafine TiO2 powders and their behaviour in the as-received form and colloidal suspensions were analysed. Besides the particle size, the morphology and agglomeration state of the dry powders, dispersibility, ζ-potential and sedimentation in water and in phosphate-buffered saline (PBS) were studied. Also, leaching of ions from the powders during ageing in physiological solution and the ability of the photoactivated powders to decompose organic substances were evaluated. The examined TiO2 powders revealed diversified characteristics when dispersed in water. In general, while in dry conditions the particle size appeared in the nano-range (down to 32 nm), the particles were agglomerated in aqueous suspensions at pH ~7 and only a minor amount showed dimensions below 200 nm, but none below 100 nm. The inherent pH of the 3 % suspensions varies from 3.7 to 7.5 and the surface charge at these pH values varied from highly positive to highly negative values. In PBS, the surface charge is negative and relatively low for all the samples, which resulted in agglomeration. Five out of six powders exhibited significant photocatalytic activity when exposed to UV irradiation. This also includes one cosmetic-grade powder. Furthermore, during the immersion in aqueous media at physiological temperature, the powders released foreign ions, which might also contribute to the results of cytotoxicity tests. The results revealed the major role of the particle surface charge and its impact on particle dispersion or agglomeration. Due to the high ionic strength in the liquids relevant for cell-surface interaction tests, for all the examined titania powders the nanoparticulate character was lost. However, the presence of impurities and photocatalysis might further contribute to the results of cytotoxicity tests.  相似文献   

10.
Grain refinement in alloys is a well-known effect of ultrasonic melt processing. Fragmentation of primary crystals by cavitation-induced action in liquid metals is considered as one of the main driving mechanisms for producing finer and equiaxed grain structures. However, in-situ observations of the fragmentation process are generally complex and difficult to follow in opaque liquid metals, especially for the free-floating crystals. In the present study, we develop a transparent test rig to observe in real time the fragmentation potential of free-floating primary Al3Zr particles under ultrasonic excitation in water (an established analogue medium to liquid aluminium for cavitation studies). An effective treatment domain was identified and fragmentation time determined using acoustic pressure field mapping. For the first time, real-time high-speed imaging captured the dynamic interaction of shock waves from the collapsing bubbles with floating intermetallic particles that led to their fragmentation. The breakage sequence as well as the cavitation erosion pattern were studied by means of post-treatment microscopic characterisation of the fragments. Fragment size distribution and crack patterns on the fractured surface were then analysed and quantified. Application of ultrasound is shown to rapidly (<10 s) reduce intermetallic size (from 5 mm down to 10 μm), thereby increasing the number of potential nucleation sites for the grain refinement of aluminium alloys during melt treatment.  相似文献   

11.
12.
Solid-solution formation in binary aluminium-based alloys is due essentially to the combined effects of the size and valence of solvent and solute atoms, as expected by the four Hume-Rothery rules. The lattice parameter of aluminium in the solid solution of the sputtered Al?Fe films is [Al-a (Å)=4.052?6.6×10?3Y]. The increasing and decreasing evolution of the lattice parameter of copper [Cu-a (Å)=3.612+1.8×10?3Z] and aluminium [Al-a (Å)=4.048?1.6×10?3X] in the sputtered Al-1.8 to 92.5 at. % Cu films is a result of the difference in size between the aluminium and copper atoms. The low solubility of copper in aluminium (<1.8 at % Cu) is due to the valences of solvent and solute atoms in contrast with other sputtered films prepared under similar conditions, such as Al?Mg (20 at. % Mg), Al?Ti (27 at. % Ti), Al?Cr (5at. % Cr) and Al?Fe (5.5 at. % Fe) where the solubility is due to the difference in size.  相似文献   

13.
We have measured the size, structure, and optical properties for two sets of nanoparticles synthesized via electrical-spark discharge between two plane silicon electrodes immersed in deionized water (DI) and 97 % ethanol. The nanoparticles were characterized by X-ray diffraction (XRD), ultraviolet (UV)-visible absorption spectrometry, Raman spectrometry, transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FTIR). The size and optical features of the nanoparticles were studied as functions of nature of the liquid. Nearly spherical, single-crystal, and morphologically similar Si nanoparticles with diameters in the 3–8 and 6–13 nm ranges were formed in the colloidal solutions of water and ethanol, with estimated indirect bandgaps of approximately 1.5 and 1.3 eV, respectively. In both cases, the Raman peaks were blue shifted with respect to those of bulk silicon, a result consistent with the small diameters of the particles. The silicon nanoparticles synthesized in water exhibited strong emission in the violet-blue range, with a double peak near 417 and 439 nm. For those synthesized in ethanol, blue-green emission centered at 463 nm was detected.  相似文献   

14.
15.
Three Fe(β-diketonate)3 compounds namely Fe(tmhd)3 (tmhd = 2,2,6,6-tetramethyl-3,5-heptanedionato), Fe(hfac)3 (hfac = hexafluoroacetylaceto), and Fe(dbm)3 (dbm = dibenzoylmethane) were used as substitutes to Fe(acac)3 (acac = acetyleacetonate) in the synthesis of FePt nanoparticles. The obtained superparamagnetic nanoparticles are 4–5 nm in diameter without showing a large size variation with substituent Fe(β-diketonate)3. The synchrotron X-ray absorption spectroscopy confirmed the energy dispersive spectroscopy that as-synthesized nanoparticles were composed of iron oxides and metallic FePt3 alloys. By employing Fe(hfac)3, the Fe fraction was reduced and the magnetization was modest. The use of Fe(dbm)3 as starting materials gave rise to densely packed FePt3/Fe2O3 heterodimers. The replacements of Fe(acac)3 by Fe(tmhd)3 led to the long-range order of nanoparticle assembly with the narrowest size distribution.  相似文献   

16.
PurposeTo investigate magnetic resonance neurography (MRN) of the lumbosacral plexus (LSP) with cerebrospinal fluid (CSF) suppression by using submillimeter resolution for three-dimensional (3D) turbo spin echo (TSE) imaging.Materials and methodsUsing extended phase graph (EPG) analysis, the signal response of CSF was simulated considering dephasing from coherent motion for frequency-encoding voxel sizes ranging from 0.3 to 1.3 mm and for CSF velocities ranging from 0 to 4 cm/s. In-vivo MRN included 3D TSE data with frequency encoding parallel to the feet/head axis from 15 healthy adults (mean age: 28.5 ± 3.8 years, 5 females; acquisition voxel size: 2 × 2 × 2 mm3) and 16 pediatric patients (mean age: 6.7 ± 4.1 years, 7 females; acquisition voxel size: 0.7 × 0.7 × 1.4 mm3) acquired at 3 Tesla. Five of the adults were scanned repetitively with changing acquisition voxel sizes (1 × 2 × 2 mm3, 0.7 × 2× 2 mm3, and 0.5 × 2 × 2 mm3). Measurements of the bilateral ganglion of the L5 nerve root, averaged between sides, as well as the CSF in the thecal sac were obtained for all included subjects and compared between adults and pediatric patients and between voxel sizes, using a CSF-to-nerve signal ratio (CSFNR).ResultsAccording to simulations, the CSF signal is reduced along the echo train for moving spins. Specifically, it can be reduced by over 90% compared to the maximum simulated signal for flow velocities above 2 cm/s, and could be most effectively suppressed by considering a frequency-encoding voxel size of 0.8 mm or less. For in-vivo measurements, mean CSFNR was 1.52 ± 0.22 for adults and 0.10 ± 0.03 for pediatric patients (p < .0001). Differences in CSFNR were significant between measurements using a voxel size of 2 × 2 × 2 mm3 and measurements in data with reduced voxel sizes (p ≤ .0012), with submillimeter resolution (particularly 0.5 × 2 × 2 mm3) providing highest CSF suppression.ConclusionsApplying frequency-encoding voxel sizes in submillimeter range for 3D TSE imaging with frequency encoding parallel to the feet/head axis may considerably improve MRN of LSP pathology in adults in the future because of favorable CSF suppression.  相似文献   

17.
Silica nanoparticles suspended in an organic solvent (nanosuspension) have been imaged and characterized via terahertz nanoscanning reconstructive three-dimension (3D) imaging technique. The size of individual silica nanoparticles in the suspension was quantified. In addition, the presence of nanoclusters along with their distribution in the suspension was visualized in 3D. It has also been qualitatively demonstrated that the volume fraction of solvent is significantly higher than that of the silica nanoparticles; an observation consistent with the composition of the nanosuspension in the present investigation. The measured size range of individual nanoparticles was found to be 10–12 nm, while the manufacturer’s specification indicates a nanoparticle size distribution in the range of 10 to 15 nm. However, a typical nanocluster size was determined to be 17.5 nm, thus indicating the presence of nanoparticles less than 10 nm. The nanometrology instrument used in this investigation was based on a dendrimer dipole excitation-based continuous wave terahertz source generating >?200 mW stable terahertz power.  相似文献   

18.
Nanoimprinting enables the implementation of nanoparticle shapes with complex 2D shapes involving different materials. In addition to these objects, this article presents 3D-shaped nanoparticles fabricated by substrate conformal imprint technique. The imprint polymer AMONIL is used either in pure form or in combination with fluorescent dyes for the preparation of particles. The substrate conformal imprint lithography process, including etching and particle release, is conducted for both materials in a similar fashion. In this work, cuboidal particles with a high aspect ratio (1:120) are compared to particles with a T-shaped cross section with respect to their abilities to enhance or reduce their stiffness. Additionally, particles with a high aspect ratio are compared to particles with a lower aspect ratio (1:20). The local stiffness is found to depend strongly on the particle thickness and the geometry of their cross section. Thicker and 3D T-shaped particles present higher local stiffness than thinner and 2D cuboidal-shaped particles. The local bending angle was determined to be 77° for 2D-shaped particles and 83° for 3D-shaped particles, of the same total height of 176 nm. Very thin particles (<50 nm) of high aspect ratio prefer to curl finally forming loops.  相似文献   

19.
A series of photochromic phosphotungstic acid (PWA)/SiO2 composites were synthesized using the sol-gel method. Depending on the feeding schedule of PWA during synthesis, the size of the formed PWA/SiO2 particles varied considerably from as small as 1.2 nm to ca. 10 nm. With decreasing silica particle size, the total contact area/interaction between SiO2 and PWA increases, as revealed by FT-IR and solid-state 29Si-NMR analyses. Particularly, when the size of PWA/SiO2 is ~1 nm, crystallization of PWA is inhibited, and PWA presents as amorphous molecular entities distributing uniformly in the SiO2 host, which is in evidence in the XRD spectroscopy and HR-TEM imaging. In contrast, substantial crystallization of PWA takes place when PWA/SiO2 particles are as large as 10 nm, in which case less amount of surface free Si-OH is available for PWA to make bonds with. Photochromism occurs activated by ultraviolet light irradiation. The rate of coloration/bleaching is found to depend strongly on the particle size of PWA/SiO2; specifically, the rate increases twice when the particle size is reduced from 10 nm to 1.2 nm.  相似文献   

20.
Broadband light absorption enhancement in crystalline silicon thin-film solar cells by rear-located 400 nm lumpy silver particles has been studied, based on the theoretical simulations of 3D finite-difference time-domain method. By simulations, we have investigated the light scattering properties of 400 nm lumpy Ag particles and put it to silicon thin-film solar cells. In addition, the varying rear-located Ag particles coverage and two surface situations of silicon films, which could influence on the light absorption of solar devices, have also been comprehensively considered. The results have shown that rear-located 400 nm lumpy Ag particles would enhance the absorption in silicon films in a broadband range. And it has been proved that 20 % coverage density of rear-located Ag particles is optimal for improving the light absorption of smooth silicon thin-film solar devices. When we create rough surface on one or both sides of silicon films, the absorbed light would further increase, and the theoretical maximum enhancement is 15.1 % compared with the smooth silicon thin-film solar cell without Ag particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号