首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Metal-organic chemical vapor deposition (MOCVD) made layers of strontium-bismuth-tantalate (SBT) were characterized by spectroscopic ellipsometry (SE) using the Adachi model [S. Adachi, Phys. Rev. B 35 (1987) 7454-7463]. The evaluated optical parameters were correlated with the physical and chemical behavior examined by X-ray diffraction (XRD).As a result, it was possible to fit the measured spectra with the Adachi model in a wide range covering the region of the band gap. The Adachi model provides electronic layer parameters like the transition energy E0 and broadening Γ. Our investigations established a correlation between XRD-determined average grain size and the electronic layer parameters.  相似文献   

2.
Sputtered tape media of a CoPtCr–SiO2 magnetic layer with a Ru underlayer was fabricated on a thin Aramid film by a facing targets sputtering (FTS) system at room temperature with no cooling. Transition electron microscope (TEM) images show columnar epitaxial growth of hcp-CoPtCr(1 0 0) plane on hcp-Ru(1 0 0). Average grain diameter of 10.2 nm with dispersion of 20.2% was obtained from TEM images. Enrichment of Co and Pt inside grains and segregation of Cr and Si to boundary were confirmed by point energy dispersive spectroscopy (EDS) measurements. Playback performance test on sputtered sample indicated that SNR is higher and PW50 value is lower than that of commercial coated tapes. These good playback properties could come from fine and isolated grain structure of magnetic layer of sputtered sample, as observed by TEM.  相似文献   

3.
This paper describes the benefits of combining transmission electron microscopy (TEM) and atom probe field ion microscopy (APFIM) techniques to study the microstructure of steels and hardmetals. In addition to energy dispersive X-ray spectrometry (EDS), recent experience of electron energy loss spectroscopy (EELS) and energy filtered TEM (EFTEM) is treated. Topics covered are: phase composition (APFIM, TEM/EDS and TEM/EELS); precipitate size distribution (EFTEM); precipitate volume fraction (APFIM); and compositional gradients (APFIM, EFTEM and SEM). Examples given include precipitate composition and size distribution in creep resistant 9–12% chromium steels, phase distribution and composition in nitrogen containing hardmetals (cermets) after sintering and heat treatment, and boron grain boundary segregation in austenitic stainless steels.  相似文献   

4.
8 (M=K or Cs). No crystalline structure was observed in the reacted materials by X-ray diffraction. In situ metal deposition, TEM, and electron energy loss spectroscopy (EELS) measurements were performed on individual SWNT bundles at 300 K. The results showed that alkali metals can be reversibly intercalated into the SWNT bundles. Although intercalation induced structural disorder, individual nanotubes and to a large extent the bundles maintained their structural integrity after intercalation and de-intercalation. Received: 10 February 1998  相似文献   

5.
Field-induced structures in a ferrofluid with well-defined magnetite nanoparticles with a permanent magnetic dipole moment are analyzed on a single-particle level by in situ cryogenic transmission electron microscopy (2D). The field-induced columnar phase locally exhibits hexagonal symmetry and confirms the structures observed in simulations for ferromagnetic dipolar fluids in 2D. The columns are distorted by lens-shaped voids, due to the weak interchain attraction relative to field-directed dipole-dipole attraction. Both dipolar coupling and the dipole concentration determine the dimensions and the spatial arrangement of the columns. Their regular spacing manifests long-range end-pole repulsions that eventually dominate the fluctuation-induced attractions between dipole chains that initiate the columnar transition.  相似文献   

6.
The chemical reaction between SiO2 and tetragonal zirconia polycrystal (TZP) was directly observed using a TEM in-situ heating technique in order to understand the behavior of SiO2 in TZP at high temperatures. Their dynamic interaction was recorded up to about 1400°C using a CCD camera-video system connected to the TEM. Most of SiO2 phase dissolved into the ZrO2 grains above 1300°C. On the other hand, during cooling from the high temperature to around 400°C, amorphous SiO2 reprecipitated from the surface of ZrO2 grains and formed a thin layer around the ZrO2 grains. This result agrees well with the fact that silicon segregates in the vicinity of grain boundaries in SiO2-doped TZP. In order to confirm the grain boundary segregation at high temperatures, we investigated grain boundaries in quenched specimens by high resolution electron microscopy (HREM), energy dispersive X-ray spectroscopy (EDS) and electron energy-loss spectroscopy (EELS). It was found that no amorphous phase was present between two adjacent grains in the quenched samples. EDS analysis revealed that silicon segregated at the grain boundaries and that the segregation layer was wider than that in as-sintered specimens. The electron energy loss near edge structure (ELNES) of O K-edge was measured from both grain boundary and grain interior in quenched specimen, and their spectra were interpreted by a first principles molecular-orbital (MO) calculation using the discrete-variational (DV)-X method.  相似文献   

7.
The fine structure of the calcite prism in the outer layer of a pearl oyster, Pinctada fucata, has been investigated using various electron beam techniques, in order to understand its characteristics and growth mechanism including the role of intracrystalline organic substances. As the calcite prismatic layer grows thicker, sinuous boundaries develop to divide the prism into a number of domains. The crystal misorientation between the adjacent domains is several to more than ten degrees. The component of the misorientation is mainly the rotation about the c-axis. There is no continuous organic membrane at the boundaries. Furthermore, the crystal orientation inside the domains changes gradually, as indicated by the electron back-scattered diffraction (EBSD) in a scanning electron microscope (SEM). Transmission electron microscopy (TEM) examination revealed that the domain consists of sub-grains of a few hundred nanometers divided by small-angle grain boundaries, which are probably the origin of the gradual change of the crystal orientation inside the domains. Spherular Fresnel contrasts were often observed at the small-angle grain boundaries, in defocused TEM images. Electron energy-loss spectroscopy (EELS) indicated the spherules are organic macromolecules, suggesting that incorporation of organic macromolecules during the crystal growth forms the sub-grain structure of the calcite prism.  相似文献   

8.
Cu–Ag core–shell nanopowders have been prepared by ultrasound-assisted electrochemistry followed by a displacement reaction. The composition of the particles has been determined by X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX). The XRD patterns versus time displacement show that higher are the silver peaks intensities, weaker are the copper ones. That exhibits the progressive recovering of copper by silver. EDX results and quartz crystal microbalance results indicate that various reaction mechanisms are implied in this process. Transmission electron microscopy (TEM) points out variable nanometric diameter grain and some small agglomerates. Elemental mapping obtained by electron energy-loss spectroscopy (EELS) underlines the core–shell structure.  相似文献   

9.
Experimental confirmation for the stronger interaction of Ni with multi-walled carbon nanotubes (MWCNTs) compared to Cu with MWCNTs is presented. The interfaces between Cu (Ni) nanoparticles side-on oriented onto MWCNTs are analyzed with high spatial resolution electron energy-loss spectroscopy (EELS) of the carbon K-edge. The EEL spectra reveal a rehybridization from sp2 to sp3 hybridized carbon of the outermost MWCNT layer at the Ni interface, but no such rehybridization can be observed at the Cu interface. The EELS results are supported by transmission electron microscopy (TEM) images, which show a better wetting behavior of Ni and a smaller gap at the Ni–MWCNT interface, as compared to the corresponding Cu interfaces. The different behavior of Cu and Ni can be explained in terms of differing valence d-orbital occupancy. For the successful experimental demonstration of this effect the use of a soft chemical metal deposition technique is crucial.  相似文献   

10.
Optimum parameters for the growing of YMnO3 films by pulsed liquid injection metalorganic chemical vapor deposition have been studied. Si substrates were used for the optimization of the deposition process. X-ray diffraction (XRD) and transmission electron microscopy (TEM) results show that polycrystalline single phase YMnO3 films can be obtained for an optimal ratio of Y and Mn on the injected solution and either amorphous, metastable orthorhombic, and/or hexagonal YMnO3 phases can be obtained depending on the deposition temperature and precursors ratio. In a second stage, YMnO3 films were grown on SrTiO3 substrates. Pure epitaxial orthorhombic YMnO3 phase was confirmed by XRD. The films microstructure, characterized by scanning electron microscopy and TEM, shows a columnar growth. Each columnar grain grows epitaxially with three possible orientations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号