首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
马占龙  隋永新 《光学学报》2014,34(1):122001
为了获得超高精度面形的光学元件并验证离子束的修正能力,对应用离子束修正大面形误差光学元件的问题进行了实验研究。通过改变离子源光阑尺寸的方式获得了不同束径的离子束去除函数,并对一直径为101mm、初始面形峰谷(PV)值为417.554nm、均方根(RMS)值为104.743nm的熔石英平面镜进行了离子束修形实验。利用10、5、2mm光阑离子源的组合,进行了12次迭代修形,最终获得了PV值为10.843nm、RMS值为0.872nm的超高精度表面。实验结果表明,应用离子束可以对大面形误差光学元件进行修正,并且利用更大和更小束径离子束去除函数的组合进行优化,可以进一步提升加工效率和精度。  相似文献   

2.
为了验证离子束修正超高陡度镜面的能力,对采用五轴离子束加工超高陡度镜面的问题进行了分析研究和加工实验。根据现有检测条件制定了实验方案并对面形数据进行了处理;对超过机床五轴加工摆轴行程区域的驻留时间进行了补偿;建立了离子束五轴加工后置处理算法,根据该算法编制了数控程序生成软件,并通过实验验证了生成的数控程序的正确性;最后进行了超高陡度镜面的五轴离轴加工实验,经过5轮迭代加工后,元件面形由初始的峰谷(PV)值为57.983 nm、均方根(RMS)值为9.406 nm,收敛PV值为11.616 nm、RMS值为1.306 nm,总收敛比达到7.20。实验结果表明:采用五轴离子束加工超高陡度镜面的方案可行,并且获得了较高的收敛效率和加工精度,同时验证了离子束离轴镜加工的可行性。  相似文献   

3.
计算全息图(CGH)作为零位补偿器广泛应用于高精度非球面的检测中,但CGH的基底误差直接限制了非球面的检测精度。为了获得超高精度的CGH基底,提出了应用离子束修正CGH基底的加工工艺。采用不同束径的离子束去除函数对一边长152 mm(有效口径140 mm圆形区域)、厚6.35 mm的正方形熔石英CGH基底分别进行了精抛、精修和透射波前修正实验。经过总计7轮的迭代修正,最终获得了透射波前为PV值20.779 nm、RMS值0.685 nm的超高精度CGH基底。实验结果表明:应用离子束修正高精度CGH基底的加工工艺具有较大优势,不仅具有较高的加工效率而且可以获得超高的加工精度。  相似文献   

4.
离轴凸双曲面的加工和检测是非球面加工检测中的一个比较困难的问题.结合一块口径φ230mm、离轴量226mm的凸双曲面镜,提出了离轴凸双曲面镜单修加工以及采用离轴Hindle球检测偏转角度的离轴凸双曲面镜这一方案.给出了单修加工工艺,并解决了检测光路的搭建难点.加工完成的离轴凸双曲面的面形精度RMS优于λ/50(λ=63...  相似文献   

5.
叙述了三块离轴量为140mm,表面波差≤λ/10离轴抛物面镜的磨制工艺及工艺参数,并对此工艺进行讨论。  相似文献   

6.
光学镜面离子束加工去除函数工艺可控性分析   总被引:1,自引:0,他引:1  
实验分析了离子束加工去除函数的工艺可控性问题并进行了初步修形实验。从工艺实现的角度分析光学镜面离子束加工技术对去除函数的要求,以去除函数环半峰全宽、体积去除率和峰值去除率为评价指标研究去除函数的长时稳定性、线性性、小扰动鲁棒性以及大参数调节变化等特征,以此分析结果为依据,对Φ100mm K4平面样件进行了修形,经过三次迭代面形RMS误差从0.149λ收敛到0.013λ。实验结果表明:离子束加工中的去除函数具有较长时稳定性,去除量对时间具有线性关系,对工艺参数小扰动的鲁棒性,可以通过调节离子源电源参数优化选取去除函数的宽度和幅值;利用离子束可以对镜面进行高效地修形。  相似文献   

7.
李杰  伍凡  吴时彬  匡龙  林常青 《光学学报》2012,32(1):112002-120
为满足离轴非球面镜在光学检验前的面形检测需求,对使用激光跟踪仪测量离轴非球面的方法进行了研究。详细介绍了使用激光跟踪仪测量离轴非球面的检测步骤及数据处理方法。使用激光跟踪仪对一处于研磨阶段的口径为150 mm,顶点曲率半径为1200 mm,离轴量为240 mm的离轴抛物面镜进行了测量,进行了测量不确定度分析并与三坐标测量机的测量结果进行了比对。结果显示激光跟踪仪与三坐标测量机的面形测量峰谷值一致性优于1 μm。分析及实验结果表明此检测方法简单易行,灵活通用,适用于离轴非球面抛光前的面形检测。  相似文献   

8.
为了提高光学系统的成像质量,对离轴抛物面反射镜的面形准确度要求越来越高,这大大增加了反射镜的加工难度.本文基于波像差理论,分析了在离轴抛物面反射镜中调整量引入的波像差,提出通过适当调整离轴抛物面反射镜的位置补偿反射镜的面形误差,可以降低离轴反射镜的加工难度、缩短其加工周期、减少加工成本.并借助于ZEMAX软件对一块面形准确度低于λ/40RMS(λ=632.8nm)离轴抛物面反射镜进行仿真实验,根据理论计算的调整量调整反射镜的位置,得到了补偿后的离轴抛物面反射镜的面形误差小于λ/60RMS,仿真结果表明在离轴抛物面反射镜中引入适当的调整量可以有效地补偿反射镜的面形误差.  相似文献   

9.
高精度瑞奇-康芒检测法研究及测试距离精度影响分析   总被引:1,自引:0,他引:1  
朱硕  张晓辉 《光学学报》2014,34(1):112001
为实现高精度瑞奇-康芒法检测,利用检测系统光瞳面与被测平面镜二者间的坐标转换关系,结合最小二乘法直接对测得的系统波像差进行恢复,通过两角度检测分离由光路调整引入的离焦误差,得到更为精准的平面镜面形。分析光路中测试距离对坐标转换关系以及瑞奇角求解精度的影响,根据仿真分析结果确定实验方案。实验中采用两角度检测,对测试波前进行恢复并分离系统调整误差后,最终得到被检平面镜面形,结果峰谷(PV)值为0.182λ、均方根(RMS)值为0.0101λ,对比干涉仪直接检测结果 PV值为0.229λ、RMS值为0.013λ,PV检测精度优于λ/20,RMS检测精度优于λ/100,实验结果证明了此种面形恢复方法的有效性以及测试距离精度分析理论的正确性,从而实现了瑞奇-康芒法高精度检测。  相似文献   

10.
光学镜面磁流变确定性修形的实现   总被引:1,自引:0,他引:1  
磁流变确定性修形具有高精度、高效率、高表面质量以及近零亚表面损伤的特点。介绍了磁流变修形技术的基本原理和方法,并对磁流变修形中涉及的关键技术进行了讨论。在自研的磁流变修形设备上采用水基磁流变抛光液对一块直径80mm的K9玻璃平面进行了磁流变修形实验。经过一次迭代修形(4.39min)使其面形精度峰谷(PV)误差由初始的0.144λ改善到0.06λ(λ=632.8nm),均方根(RMS)误差由初始的0.031λ改善到0.01λ,面形收敛率达到2.81,表面粗糙度RMS值达到0.345nm。实验结果表明,采用磁流变进行光学表面修形,面形收敛快,面形精度高,表面质量好,可广泛应用于高精度光学镜面加工。  相似文献   

11.
为了提高光学加工效率,缩短大口径光学元件制造周期,本文提出了一种具有公自转运动模式的新型高效抛光方式,对其结构、工作原理以及去除特性进行了研究。首先,介绍了公自转抛光装置机械结构及工作原理。接着,根据Hertz接触理论和Preston方程进行了去除函数建模,讨论了不同转速比情况下的去除函数形状。然后,根据理论模型进行了去除函数实验、工艺参数实验以及稳定性实验,研究了压入深度、转速等工艺参数对去除结果的影响。最后,进行了200 mm口径SiC工件的仿真加工。实验结果表明:在2 mm压入深度、200 rpm转速情况下,去除区域直径为19.23 mm,体去除率达到0.197 mm~3/min,去除效率高于同等去除区域大小的传统小磨头加工方式;仿真加工结果表明:SiC仿真镜经过3.7 h加工,面形从3.008λPV,0.553λRMS提高到0.065λPV,0.005λRMS,收敛效率为达到98.18%。  相似文献   

12.
Φ520mmF/1.6椭球面反射镜加工   总被引:1,自引:0,他引:1  
介绍了一块Φ520mm大相对孔径(F/1.6)轻量化椭球面反射镜的加工与检测方法。镜面的有效口径为Φ502mm,顶点曲率半径为1600mm,非球面系数k=-0.9663,面形精度要求优于0.025λ(RMS)。镜子背面有54个大小深浅不一的不通孔,用于减轻镜子的重量。采用WYKO干涉仪检测得到镜面面形误差达RMS0.02λ,λ=632.8nm。  相似文献   

13.
计算机辅助装调方法在离轴卡塞格林系统中的应用   总被引:3,自引:0,他引:3  
针对高成像质量的离轴光学系统的计算机辅助装调问题,许多研究者提出了利用泽尼克系数建立灵敏度矩阵来求解失调量,但这种方法只有在泽尼克系数和失调量存在线性关系的前提下才能准确求解。提出了一种新的能求解较大失调量的计算机辅助装调方法,用此方法对一个口径为250mm的离轴卡塞格林系统进行了装调,得到了中心视场波像差RMS为0.0405λ(λ=632.8nm)。由这种方法计算出的失调量不仅准确,而且能够用于系统装调初期存在大失调量的情况。因此用这种方法能够显著提高离轴光学系统的装调效率。  相似文献   

14.
为了解决长条形镜面面形拟合中各项不正交,无法在调整中利用像差指导计算机辅助装调的问题,本文建立了一套合理的拟合模型。该模型以矩阵求解正交化Zernike多项式系数为基础,将离散的数据点作为定义域,对已选取的Zernike项进行定义域内正交化计算,并以获得的各正交项为基底,实现对长条形镜面及其他异形光学镜面的正交化多项式拟合求解。进而确定在干涉检测中加工误差与装调误差的分离,为光学镜面的最终面形收敛提供保障。根据本文实验结果,对一口径600 mm×260 mm,PV与RMS值分别为5. 889λ及1. 002λ的长条形光学镜面进行拟合,利用Metropro去像散后,面形未得到收敛,PV与RMS值分别变为7. 448λ及1. 725λ。而采用本文算法处理后,其PV与RMS值分别收敛为4. 666λ及0. 679λ,验证了本文方法对于长条形镜面拟合的正确性。  相似文献   

15.
应用离子束进行光学镜面确定性修形的实现   总被引:9,自引:3,他引:6  
为了克服传统光学镜面抛光方法的缺点,提出了应用离子束进行光学镜面修形的方法.介绍了离子束修形技术的原理和方法,并对离子束修形中涉及的关键技术进行了讨论.在自研的离子束修形设备上对一块直径φ98 mm的微晶玻璃平面样件进行了离子束修形试验,经过两次的迭代修形使其面形精度均方根误差由初始的0.136λ提高到0.010λ(λ=632.8nm),平均每次迭代的面形收敛率达到3.7.实验结果表明,应用离子束进行光学镜面修形无边缘效应、面形收敛快、加工精度高;由于离子束修形技术去除材料过程自身的特点,使数控离子束修形技术对非球面的加工和对平面的加工难度相当.  相似文献   

16.
离轴非球面反射镜补偿检验的计算机辅助装调技术研究   总被引:2,自引:1,他引:1  
利用零补偿器实施离轴非球面元件面形的干涉检测中,为了实现反射镜的高准确度检测,对其干涉结果中的误差信息进行了分析.根据零补偿器的补偿原理,提出一种新的调整误差分离方法,建立了离轴非球面补偿检验的调整误差分离模型,并利用该模型对一块离轴非球面反射镜进行了仿真实验.调整前由调整误差引入的波像差为0.2332λRMS(λ=632.8nm),根据仿真结果调整后的波像差为0.0026λRMS,表明该方法具有较高的准确度,可有效提高检测效率.  相似文献   

17.
为实现对大尺寸光学材料及系统元件的高精度对准测试,设计了一种新型Φ200 mm口径长焦距准直干涉测试装置。该装置以球面标准镜作为参考镜,结合斐索型透射式干涉机制和长焦距准直测试原理对凹球面大曲率半径光学元件进行面形精度检测,最大测试口径为Φ226.67 mm,且球面标准镜和球面标准反射镜同轴共球心,大幅度减小了测试空腔距离。结果表明,该系统空腔测试精度PV值为0. 097λ@632. 8 nm,RMS值为0. 013λ@632. 8 nm,系统重复稳定性优于λ/500@632. 8 nm,可实现曲率半径为7 500~8 500 mm测试,且大曲率半径测试误差小于1/1 000。  相似文献   

18.
基于最优化思想的磁流变抛光驻留时间算法   总被引:1,自引:1,他引:0  
基于最优化思想研究磁流变抛光驻留时间算法。将驻留时间反卷积运算变换成矩阵运算,以实际加工要求为约束条件,建立关于驻留时间的最优化数学模型,利用最小二乘逼近和最佳一致逼近数学解法器对优化模型进行数值求解。仿真结果显示:该算法收敛幅度大,计算效率较高,所求解满足数控加工要求。在自行研制的磁流变抛光机床上进行抛光实验,对有效口径为50 mm的圆形平面工件,经过4.7min抛光,PV值从0.191λ降至0.087λ,收敛54.5%,RMS值从0.041λ降至0.010λ,收敛75.6%。  相似文献   

19.
非球面元件精密铣磨加工技术研究   总被引:1,自引:1,他引:0  
通过对Φ42 mm和Φ82 mm口径非球面光学零件精密铣磨成型过程的加工特点和加工误差因素的分析,在工艺中引入刀具与工件变形、刀具半径误差等因素,结合经典Hertz接触理论建立了刀具与工件变形量及刀具半径误差和补偿理论模型,并且应用在精密铣磨成型过程中,通过实验,Φ42 mm口径非球面光学零件经一次精密铣磨成型后元件面形精度PV值为1.91μm,RMS值达到0.288μm;Φ82 mm口径非球面光学零件经一次精密铣磨成型后元件面形精度PV值为1.60μm,RMS值达到0.385μm,完全满足加工精度要求,加工时间节省了50%以上。实验验证了理论分析及误差补偿方法的正确性,实现了精密光学非球面元件的快速精密铣磨成型加工。  相似文献   

20.
针对超薄光学元件在加工过程中因重力和磨头产生应力形变的特点,提出了一种高效、先进的超薄光学元件综合加工方法。该方法综合运用了精密铣磨、精密抛光、离子束修形等先进技术进行面形控制。在铣磨阶段采用受力分析和误差补偿的方法降低了元件变形引入的面形误差;在抛光阶段通过气囊抛光和沥青抛光的迭代实现了面形快速收敛;在离子束加工阶段充分利用其非接触、无应力的加工特点实现了高精度面形修正。实验选择径厚比为34(边长152 mm,厚度6.35 mm)的方形融石英材料进行加工实验。结果表明:在铣磨、抛光、修形阶段的各项指标都达到了精密光学元件的加工水平,最终的面形精度为PV=25 nm,RMS=1.5 nm。该加工方法可以广泛应用于超薄光学元件的高精度加工。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号