首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The forward asymmetry in the differential cross section for the photo disintegration of the deuteron has been calculated on the basis of a phenomenological theory for energies up to 80 MeV. The formulas for this asymmetry, which come from theE1-E2-andM1-M2-interference, are given, assuming the validity ofSiegert's theorem. TheE2-andM2-amplitudes are calculated approximately, using the Hulthén wavefunction with a 4% D-state admixture for the ground state and scattered waves determined by the phase shifts given by Marshak for the final states. The contribution of theM1-M2-interference turns out to be unimportant for the asymmetry, theE1-E2-interference giving the main effect. In the differential cross section,dσ/dΩ=a + b sin 2 ? + c cos ? + d cos ? sin 2 ?, we have obtained a very low value forc and the ratioc/d is approximately equal toa/3b. This is in contradiction to the assumptionc/d=a/b made in the previous analysis of the experimental data. This ratio seems to be insensitive to the value of the D-state admixture. For the lover energiesE γ=10 MeV andE γ=20 MeV the theoretical values for “d” are in agreement with the experimental ones. For the energies 54 and 80 MeV we have made a comparison of the theoretical differential cross sectiondσ/dΩ, taking into account the values for “a” and “b”, obtained in a former work ie, with the measureddσ/dΩ.  相似文献   

2.
We study a one-dimensional quasiperiodic system described by the Aubry–André model in the small wave vector limit and demonstrate the existence of almost mobility edges and critical regions in the system. It is well known that the eigenstates of the Aubry–André model are either extended or localized depending on the strength of incommensurate potential V being less or bigger than a critical value V c , and thus no mobility edge exists. However, it was shown in a recent work that for the system with V < V c and the wave vector α of the incommensurate potential is small, there exist almost mobility edges at the energy E c±, which separate the robustly delocalized states from “almost localized” states. We find that, besides E c±, there exist additionally another energy edges E c′±, at which abrupt change of inverse participation ratio (IPR) occurs. By using the IPR and carrying out multifractal analyses, we identify the existence of critical regions among |E c±|?≤?|E|?≤?|E c′±| with the mobility edges E c± and E c′± separating the critical region from the extended and localized regions, respectively. We also study the system with V > V c , for which all eigenstates are localized states, but can be divided into extended, critical and localized states in their dual space by utilizing the self-duality property of the Aubry–André model.  相似文献   

3.
The relationship among the Coherence time (CT) τ, the Variation frequency λ, the energy separation ΔE and coupling constant α in quantum well was investigated using Pekar type variational method. The results indicated that the Coherence time τ is positively proportional to the Variation frequency λ, but the energy separation ΔE and coupling constant α are negatively correlated with the Coherence time τ. When ΔE is more than 10ev, and when α is more than 5, τ decreases sharply.  相似文献   

4.
Spectra of secondary particles (γ-rays) in γ-families detected in the X-ray chambers in the Pamirs (H = 600 g cm?2) have been analyzed. These γ-ray spectra show a bend at the energy E* γ ≈ (ΣE γ )min, where (ΣE γ )min is the lowest total energy of γ-rays in the families above which γ-families were selected. The bend is not related to the knee in the spectrum of primary particles; it is due to the use of the ΣE γ selection criterion. The E γ spectrum slope is sensitive to the spectrum of the primary cosmic rays in the region E γ ≥ (ΣE γ )min.  相似文献   

5.
We calculate the Komar energy E for a noncommutative inspired Schwarzschild black hole. A deformation from the conventional identity E = 2ST H is found in the next to leading order computation in the noncommutative parameter θ (i.e. \({\mathcal{O}(\sqrt{\theta}e^{-M^2/\theta})}\)) which is also consistent with the fact that the area law now breaks down. This deformation yields a nonvanishing Komar energy at the extremal point T H  = 0 of these black holes. We then work out the Smarr formula, clearly elaborating the differences from the standard result M = 2ST H , where the mass (M) of the black hole is identified with the asymptotic limit of the Komar energy. Similar conclusions are also shown to hold for a deSitter–Schwarzschild geometry.  相似文献   

6.
The so-called “asymptotic projection technique” developed in previous papers of the authors is applied to the calculation of electronic transition-dipole moments (TDMs) in the one-determinant approximation between states of the same spin and spatial symmetry. The basic equations of the method and specific features of their application to a TDM calculation are briefly discussed. The attention focusses on the choice of a finite one-particle basis set. For this purpose, two possible algorithms for constructing distributed basis sets are proposed. In the first of them, the construction is based on minimization of the Hartree–Fock energy (EHF) with respect to nonlinear basis set parameters. In the second case, the parameters are determined by minimizing the functional E = EHF + EMP2, which includes the electron correlation through the second order of Møller–Plesset perturbation theory (ЕМР2). On the whole, the results of calculations in both basis sets are in agreement with high-accuracy calculations performed by configuration interaction methods. The basis set adapted for E = EHF + EMP2 significantly improves the accuracy as compared to the basis set of the first type.  相似文献   

7.
The physical consequences emerging from a theory stated byKraichnan are considered with regard to isotropic hydromagnetic turbulence. This theory involves the direct-interaction approximation retaining the phase correlation within each triad of Fourier amplitudes. These interactions are suggested to be very important in hydromagnetic turbulence. Hydrodynamic as well as magnetic impulse-response function and time-correlation are unequivocally the same. This result suggests the existence of a universal equilibrium range. Within the inertial range the total energy spectrumE g (k)=E(k)+E m (k) obeys the same law as in hydrodynamic turbulenceE(k). The valueE m (k)E(k) corresponds roughly to maximum energy flux through this range. The magnetic energy flux decreases rapidly for eddies with larger wave-numbers within the range of ohmic ? viscous dissipation.  相似文献   

8.
The fourth-order symmetry energy Esym,4(A) of heavy nuclei is investigated based on the Skyrme energy density functional in combination with a local density approximation. Unlike some previous works, in our method, the interferences from the other energy terms are removed since it is completely isolated from the rest of energy terms. The calculated Esym,4(A) is much less than that extracted from nuclear masses. The underlying reason for the big difference is discussed. The Brueckner theory also gives a small fourth-order symmetry energy coefficient of nuclear matter, which is also different from recent conclusions with another methods.  相似文献   

9.
We analyze systematically the effective order parameters in nuclear shape phase transition both in experiments and in the interacting boson model. We find that energy ratios and B(E2) ratios can distinguish the first- from the second-order phase transition in theory above a certain boson number N (about 50), but in experiments, only those quantities, such as E(L 1 +)/E(02 +) and B(E2; (L+2)1L 1)/B(E2; 21 → 01), etc., of which the monotonous transitional behavior in the second-order phase transition is broken in the first-order phase transition independent of N, are qualified as the effective order parameters. By implementing the originally proposed effective order parameters and the new ones, we find that the isotones with neutron number N n = 62 are a trajectory of the secondorder phase transition. In addition, we predict that the transitional behavior of isomer shifts of Xe, Ba isotopes and N n = 62 isotones is approximately monotonous due to the finiteness of nuclear system.  相似文献   

10.
Calibration procedure of ΔE ? E detectors used in dp breakup reaction measurement in the framework of DSS project is discussed. Time information from all PMTs along with amplitude information and known energy values of pp quasi elastic reaction are used to find calibration coefficients for ΔE and E detectors. Calibration coefficients are used to recover deposited particle energies. ΔE vs. E plots, energies and missing mass spectra are compared with geant4 Monte Carlo simulation. Missing mass for particular physical configuration is calculated as a test of the calibration procedure quality.  相似文献   

11.
The histories-based framework of Quantum Measure Theory assigns a generalized probability or measure μ(E) to every (suitably regular) set E of histories. Even though μ(E) cannot in general be interpreted as the expectation value of a selfadjoint operator (or POVM), we describe an arrangement which makes it possible to determine μ(E) experimentally for any desired E. Taking, for simplicity, the system in question to be a particle passing through a series of Stern-Gerlach devices or beam-splitters, we show how to couple a set of ancillas to it, and then to perform on them a suitable unitary transformation followed by a final measurement, such that the probability of a final outcome of “yes” is related to μ(E) by a known factor of proportionality. Finally, we discuss in what sense a positive outcome of the final measurement should count as a minimally disturbing verification that the microscopic event E actually happened.  相似文献   

12.
We have compared results of electronic transport using two different approaches: Dirac vs tight-binding (TB) Hamiltonians to assesses disorder-induced effects in graphene nanoribbons. We apply the proposed Hamiltonians to calculate the density of states, the transmission along the ribbon, and the pseudo-spin polarization (P(E)) in metallic armchair graphene nanoribbons. We clearly show differences between these two approaches in the interference processes, especially in the low-lying energy limit, when the systems are found in the presence of random impurities (disorder). This allows us to find fingerprints associated with each model used. As the disorder increases, more robust electronic transmission (through polarized states in a given sublattice) arises when one is dealing with the Dirac model only. We also find with this model unexpected peaks in the P(E) far from the Dirac point for wider nanoribbons. In the other hand, the model TB show the Dirac limit with disturbances of the hyperboloid subbands for certain potentials of the impurities. In general, our study is indicating that a P(E) spectroscopy (analyzing the line width and intensity) can be used to detect fingerprints of the increase of asymmetry in the scattering processes and the transport limits where hyperboloid subbands are important.  相似文献   

13.
14.
In order to obtain a regular but energy-dependent nuclear potential, the following modification of the separation method ofMoszkowski andScott is used: we replace the nuclear potentialv c (r) by a long-range potentialv l (r)=v c (r) Θ(r? d 0) together with a short-range energy dependent repulsionv s =h(k) Θ(r c ?r), whered 0 is the separation distance for vanishing energy andr c is the hard-core radius. The potentialv=v s +v l (r) is fitted to theS-wave scattering data and the binding energy of the deuteron.h(k) turns out to be almost proportional to the scattering energyE rel for energiesE rel<150 MeV.  相似文献   

15.
One-dimensional localized waves, which can be considered as soliton elementary excitations, exist in a magnet with a unit spin and comparable bilinear and biquadratic spin-spin interactions, with which the state of spin nematic is realized. These excitations are characterized by a certain momentum P and a certain energy E. The structure of these solitons has been found, and the E = E(P) dependence, which plays the role of the dispersion law of these soliton elementary excitations, has been constructed. The energy of a soliton with a certain momentum is shown to be lower than that of the quasiparticles of a linear theory. At small momenta, these E = E(P) dependences of the soliton and quasiparticles coincide asymptotically. The dependence of the soliton energy on the soliton momentum is a periodic function with a period P 0 = π?/a, whose value does not depend on exchange integrals and depends only on a single crystal parameter, namely, the interatomic distance a. These soliton excitations have common features with the so-called Lieb states, which are well known in many condensed matter models.  相似文献   

16.
We have studied spin-resolved correlations in the warm-dense homogeneous electron gas by determining the linear density and spin-density response functions, within the dynamical self-consistent mean-field theory of Singwi et al. The calculated spin-resolved pair-correlation function g σ σ(r) is compared with the recent restricted path-integral Monte Carlo (RPIMC) simulations due to Brown et al. [Phys. Rev. Lett. 110, 146405 (2013)], while interaction energy E int and exchange-correlation free energy F xc with the RPIMC and very recent ab initio quantum Monte Carlo (QMC) simulations by Dornheim et al. [Phys. Rev. Lett. 117, 156403 (2016)]. g ↑↓(r) is found to be in good agreement with the RPIMC data, while a mismatch is seen in g ↑↑(r) at small r where it becomes somewhat negative. As an interesting result, it is deduced that a non-monotonic T-dependence of g(0) is driven primarily by g ↑↓(0). Our results of E int and F xc exhibit an excellent agreement with the QMC study due to Dornheim et al., which deals with the finite-size correction quite accurately. We observe, however, a visible deviation of E int from the RPIMC data for high densities (~8% at r s = 1). Further, we have extended our study to the fully spin-polarized phase. Again, with the exception of high density region, we find a good agreement of E int with the RPIMC data. This points to the need of settling the problem of finite-size correction in the spin-polarized phase also. Interestingly, we also find that the thermal effects tend to oppose spatial localization as well as spin polarization of electrons.  相似文献   

17.
de Haas-van Alphen oscillation spectrum of two-dimensional systems is studied for general power law energy dispersion, yielding a Fermi surface area of the form S(E) ∝ E α for a given energy E. The case α = 1 stands for the parabolic energy dispersion. It is demonstrated that the periodicity of the magnetic oscillations in inverse field can depend notably on the temperature. We evaluated analytically the Fourier spectrum of these oscillations to evidence the frequency shift and smearing of the main peak structure as the temperature increases.  相似文献   

18.
The elastic-scattering process proceeding through two resonance levels that have the same spin j and equal resonance energies, (E1 = E2), but different widths (Γ1 ≠ Γ2) is considered. It is shown that the energy dependence of the total scattering cross section has two equal maxima at the points E1 ± (1/2) \(\sqrt {{\Gamma _1}{\Gamma _2}} \), the cross-section value at the maxima being 4π (2j + 1)?2, where ? is the wavelength of the incident particle in the c.m. frame, and that, at the energy E1, the cross section vanishes, σ (E1) = 0. The cross section is symmetric with respect to the point E1.  相似文献   

19.
Various facets of the question of whether Wigner’s supersymmetry [SU(4) symmetry] may be restored in heavy and superheavy nuclei are analyzed on the basis of a comparison of the results of calculations with experimental data. The energy difference between the giant Gamow–Teller resonance and the analog resonance (the difference of E G and E A) according to calculations based on the theory of finite Fermi systems is presented for the case of 33 nuclei for which experimental data are available. The calculated difference ΔE G–A of E G and E A tends to zero in heavier nuclei, showing evidence of the restoration of Wigner’s SU(4) symmetry. Also, the isotopic dependence of the Coulomb energy difference between neighboring isobaric nuclei is analyzed within the SU(4) approach for more than 400 nuclei in the mass-number range of A = 5–244. The restoration of Wigner’s SU(4) symmetry in heavy nuclei is confirmed. It is shown that the restoration of SU(4) symmetry is compatible with the possible existence of the stability island in the region of superheavy nuclei.  相似文献   

20.
Using an electrostatic analyzer-lens as a monochromator the energy-widthΔE of the thermionically emitted electrons was significantly reduced to 10 meV at 10 keV primary energy. According to theoretical conclusions there results a dependence ofΔE with primary energyE asE 3/2. The arrangement was used for investigations of energy-loss-spectra of solids (Al and Ag) and gases (Ar).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号