首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
文章采用第一性原理,利用掺杂硼的碳纳米管(BC3NT)容易产生拓扑缺陷的特点,将其用作混合系锂空气电池正极材料,研究了BC3NT拓扑缺陷电子性质及氧分子吸附.结果表明:BC3NT产生的拓扑缺陷使得氧气在纳米管外表面吸附更加稳定,且缺陷环越大,吸附越稳定.七元环缺陷、八元环缺陷分别会使氧气在纳米管外表面发生半解离吸附和完全解离吸附,有利于氧还原反应的发生;通过布居分析电荷转移进一步验证了缺陷环越大,转移电荷越多,吸附越稳定. BC3NT能增强对氧分子的解离吸附能力,有利于氧还原反应的进行.该材料适合用作混合系锂空气电池正极,有利于提高其性能.  相似文献   

2.
双电解液锂空气电池因其高理论能量密度受到广泛研究,但电池正极侧氧还原反应(ORR)速率低,其反应速率是限制锂空气电池发展的主要因素之一.本文提出了以钌(Ru)掺杂单层石墨烯作为正极ORR催化剂,采用第一性原理计算nRu (n=1~3)掺杂石墨烯的电子结构和氧气在Ru掺杂石墨烯表面的吸附性能,并以过渡态搜索方法获得ORR反应路径,研究碱性溶液中Ru掺杂单层石墨烯作用下的ORR机理.研究结果表明,经Ru原子掺杂后,石墨烯能够获得稳定的掺杂结构,且电导率显著提升.同原始单层石墨烯相比,Ru掺杂石墨烯增强了对O2的吸附能力.在三Ru(n=3)掺杂石墨烯表面进行的ORR无需克服任何能垒.此外,三Ru掺杂石墨烯表面对OH基团的吸附能最低,有利于ORR的连续进行.研究表明三Ru掺杂石墨烯有望成为一种新型的ORR催化剂以提高双电解液锂空气电池的性能.  相似文献   

3.
Kun He  Yongming Zhu  Haihao Shi 《Ionics》2017,23(2):385-393
MnO2 doped with Ce was hydrothermally synthesized and the as-made breathable waterproof membrane used outside the cathode was prepared for improving the lithium-air battery performance in air. The samples were characterized by scanning electron microscopy (SEM), energy dispersive spectrum analysis (EDS), charge–discharge cycle tests, charge–discharge cycle tests of limited capacity, and electrochemical impedance spectroscopy (EIS) tests. The result showed that Ce x Mn1-x O2 can effectively reduce the charge overpotential of the cathode. The charge and discharge electrical potential difference of Ce0.1Mn0.9O2 was only 700 mV while MnO2’s was 2100 mV. And Ce0.1Mn0.9O2 that exhibited high discharge capacity of 400 mAh g?1 in air had a stable discharge platform of 2.5 V and then the more obvious charge phenomenon appeared after 3.5 V. The excellent catalysis, the effect of cathode catalytic materials named Ce x Mn1-x O2, may attribute to the decrease of reaction potential energy of oxygen reduction reaction and oxygen evolution reaction.  相似文献   

4.
The electron transfer failure model is proposed to analyze the effects of discharge products on the air electrode performance in lithium-air batteries. In order to understand how the air electrode products are obtained during the discharge cycle, three kinds of carbon-based air electrode are constructed, and discharged products are analyzed by powder XRD and SEM techniques. It can be concluded that the air electrode is covered with the products, indicating that the discharge products closely depended on the surface states of carbon materials. EIS studies show that the value of R ct value changes due to the deposition of discharge products on carbon materials. Finally, all present studies show that the air electrode failure is mainly caused by the difficulty of charge transfer.  相似文献   

5.
We investigate the possibility of using a TiO2 anode as an alternative to the Li electrode in Li–air and Li-ion rechargeable batteries. TiO2 nanotube layer is fabricated by the anodization method and optional thermal treatment is conducted. The electrochemical charge/discharge profile of the TiO2/liquid electrolyte/LiCoO2 structured cell is measured under the flowing of O2, N2 and Ar, respectively. The elevation of the upper cut-off voltage from 3 to 4.5 V leads to an increase in the specific capacity by a factor of more than three. We suppose this to be a novel mechanism in which the TiO2/LiCoO2 system under the oxygen atmosphere works in Li–air battery mode up to 3 V and then works in Li-ion battery mode from 3 V to 4.5 V. This idea is confirmed by ICP-OES analysis.  相似文献   

6.
MnO2/carbon nanotube composite electrodes for Li-ion battery application were directly coated with ultrathin thicknesses of aluminum oxide film by atomic layer deposition (ALD). The non-reactive Al2O3 layer not only provides a stable film to protect the manganese oxide and carbon nanotubes from undesirable reaction with the electrolyte but also restrains the volume change strain of manganese oxide during cycling. The first cycle Coulombic efficiency of coated samples was increased to different extents depending on the coating thickness. In the following cycles, the coated electrodes denote high specific capacity, good capacity retention ability, and perfect rate charge/discharge performance.  相似文献   

7.
Organic electrolyte is widely used for lithium-ion rechargeable batteries but might cause flammable fumes or fire due to improper use such as overcharge or short circuit. That weakness encourages the development of tools and materials which are cheap and environmental friendly for rechargeable lithium-ion batteries with aqueous electrolyte. Lithium iron phosphate (LiFePO4) with olivine structure is a potential candidate to be used as the cathode in aqueous electrolyte lithium-ion battery. However, LiFePO4 has a low electronic conductivity compared to other cathodes. Conductive coating of LiFePO4 was applied to improve the conductivity using sucrose as carbon source by heating to 600 °C for 3 h on an Argon atmosphere. The carbon-coated LiFePO4 (LiFePO4/C) was successfully prepared with three variations of the weight percentage of carbon. From the cyclic voltammetry, the addition of carbon coatings could improve the stability of cell battery in aqueous electrolyte. The result of galvanostatic charge/discharge shows that 9 % carbon exhibits the best result with the first specific discharge capacity of 13.3 mAh g?1 and capacity fading by 2.2 % after 100 cycles. Although carbon coating enhances the conductivity of LiFePO4, excessive addition of carbon could degrade the capacity of LiFePO4.  相似文献   

8.
To address the challenge of the IL-based electrolyte cannot be effectively intercalated in graphite anode, and especially the urgent needs for the compatibility between high performance and high security, the IL-based hybrid electrolyte systems with ethylene carbonate/propylene carbonate (EC/PC) as a co-solvent and vinylene carbonate (VC) as an additive were designed. The high dielectric constant of EC/PC significantly increased the ionic conductivity and lithium ion migration of the electrolyte system. Meanwhile, the presence of VC can form SEI preventing EC and PYR14+ reductive decomposition on the electrode interface, and at the same moment, the SEI promotes effective Li cation insertion into the graphene interlayer. The Li/C half-cells showed high reversible capacity, cycling efficiency, and good cycle stability with the IL-based hybrid electrolyte. It is worth to highlight the better performance, in terms of the excellent thermal stability and high safety. Thus, the IL-based hybrid electrolyte combined with good electrochemical performance holds substantial promise for lithium-ion battery, and should have broad application prospects in the high energy density, especially high-security requirements, of the new lithium-ion battery.  相似文献   

9.
《Current Applied Physics》2019,19(8):902-909
Carbon matrices have attracted the attention enthusiastically as the improver materials of sulfur for rechargeable lithium-sulfur battery. In this work, various morphologies (sphere, fiber, tube and layer) based carbon materials have been used for preparing the sulfur-carbon binary composites via melt diffusion method for lithium-sulfur battery application. The prepared binary composites have been characterized for its structural and morphological information using X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, and, Scanning and Transmission electron microscopy. The electrochemical studies are characterized by cyclic voltammetry, charge-discharge and cycle life after being assembled as lithium-sulfur cell. The S-prGO composite exhibits the initial discharge capacity of 893 mAh g−1 and it sustains over 50 cycles (598 mAh g−1) at 0.1C, with low capacity fading rate when compared to the other composites studied. A remarkable electrochemical performance indicates that the sheet like morphology can accommodate the volume expansion of sulfur and the oxygen groups containing GO minimize the dissolution of lithium polysulfides.  相似文献   

10.
The spinel LiMn2O4 is a promising candidate for future battery applications. If used as a positive electrode in a battery, the charging capacity of such a battery element is limited by the formation of a solid electrolyte interphase like layer between the electrolyte and the spinel. To study the electrolyte-electrode interaction during electrochemical cycling, spinel thin films are deposited as model electrodes on glassy carbon substrates by pulsed laser ablation. The obtained polycrystalline oxide thin films show a well defined surface morphology and are electrochemical active. Adhesion of these thin films on glassy carbon is in general poor, but can be improved considerably by a surface pretreatment or adding a thin metallic coating to the substrate prior deposition. The best adhesion is obtained for films deposited on argon plasma pretreated as well as Pt coated glassy carbon substrates. During the electrochemical characterization of Li1.06Mn2O3.8 thin film electrodes, no additional reactions of the substrate are observed independent of the used electrolyte. The best cycle stability is achieved for films on Pt coated glassy carbon substrates.  相似文献   

11.
Hydroxyl terminated poly(dimethylsiloxane) (PDMS-HT) is used as an electrolyte additive in electrolyte systems containing 1 M LiPF6 in EC:DMC (ratios 1:9; 3:7; 4:6 and 1:1 v/v) to enhance the cycle performance of lithium-ion batteries. Adding a small amount of PDMS-HT to the standard LIB electrolyte leads to improved specific capacity as well as improved capacity retention over prolonged cycles. There is also a slight increase in Li+ ion conductivity when PDMS-HT is added. Also, the PDMS-HT additive allows the formation of a more stable solid electrolyte interface (SEI) layer that enables the LIB cells to be cycled for longer cycles with minimal capacity fading. This combination of improved ionic conductivity and stable SEI layer formation due to the PDMS-HT additive, makes it an excellent candidate for an electrolyte additive for lithium ion batteries.  相似文献   

12.
Separators have garnered substantial attention from researchers and developers in regard to their crucial role in the safety of lithium-ion batteries. In this study, a composite separator was prepared by coating cubic Al2O3 nanoparticles on non-woven poly(ethylene terephthalate) (PET) via a simple dip-coating process. The basic properties of the Al2O3-coated PET non-woven composite separator were characterized by scanning electron microscopy and other specific measurements in respect to its morphology, porosity, electrolyte wettability, and thermal shrinkage as well as its application in lithium-ion batteries. We found that the composite separator has outstanding thermostability, which may improve battery safety. Additionally, by comparison against the commercial Celgard 2500 separator, the proposed composite separator exhibits higher porosity, superior electrolyte wettability, and higher ionic conductivity. More importantly, the lithium-ion battery assembled with this composite separator shows better electrochemical performance (e.g., cycling and discharge C-rate capability) compared to that with the Celgard 2500 separator. The results of this study represent a simple approach to preparing high-performance separators that can be used to enhance the safety of lithium-ion batteries.  相似文献   

13.
A piperidinium-based ionic liquid, N-methylpiperidinium-N-acetate bis(trifluoromethylsulfonyl)imide ([MMEPip][TFSI]), was synthesized and used as an additive to the electrolyte of LiFePO4 battery. The electrochemical performance of the electrolytes based on different contents of [MMEPip][TFSI] has been investigated. It was found that the [MMEPip][TFSI] significantly improved the high-rate performance and cyclability of the LiFePO4 cells. In the optimized electrolyte with 3 wt% [MMEPip][TFSI], 70 % capacity can be retained with an increase in rate to 3.5 C, which was 8 % higher than that of electrolyte without [MMEPip][TFSI]. For the Li/LiFePO4 half-cells, after 100 cycles at 0.1 C, the discharge capacity retention was 78 % in the electrolyte without ionic liquid. However, in the electrolyte with 3 wt% [MMEPip][TFSI], it displayed a high capacity retention of 91 %. The good electrochemical performances indicated that the [MMEPip][TFSI] additive would positively enhance the electrochemical performance of LiFePO4 battery.  相似文献   

14.
Bismuth sulfide nanorod array is directly grown on nickel foam (R‐Bi2S3/NF) to serve as a completely carbon and binder‐free 3D porous oxygen electrode material for lithium‐oxygen (Li‐O2) batteries. The synergistic effect of the fast kinetics of electron transport and gas and electrolyte diffusion provided by the continuous free‐standing network structure and the excellent electrocatalytic activity of the bismuth sulfide nanorod array enables outstanding performance of the oxygen electrode. Li‐O2 battery with the free‐standing R‐Bi2S3/NF oxygen electrode exhibits high energy efficiency (78.7%), good rate capability (4464 mA h g−1 at 1500 mA g−1), as well as excellent cyclability (146 cycles) while maintaining a moderate specific capacity of 1000 mA h g−1. The effect of cathodes with different reactant (O2) and intermediate (LiO2) adsorbability on the product (Li2O2) growth model is studied by first‐principle calculations. The strong O2 adsorption and weak LiO2 adsorption on Bi2S3 drives the growth of large‐size Li2O2 particles via solution growth model. Remarkably, the large‐area pouch‐type Li‐O2 battery delivers an energy density of 330 Wh kg−1. The present results open up a promising avenue toward developing novel electrode architecture for high‐performance Li‐O2 batteries through controlling morphology and functionality of porous electrodes.  相似文献   

15.
巫梦丹  周胜林  叶安娜  王敏  张晓华  杨朝晖 《物理学报》2019,68(10):108201-108201
随着科技发展和时代进步,发展质轻便携、安全环保的高性能储能器件变得日趋重要,对柔性固态超级电容器的研究也应运而生.柔性电极材料及电解质的选用是设计柔性固态超级电容器的关键因素,近年来一直是研究的热点.考虑到环境污染及实际需求问题,本文采用中性凝胶电解质对具有高比表面积、良好导电性及取向性的碳纳米管阵列进行包埋处理,所形成的柔性复合薄膜作为电极材料,设计制备三明治结构的柔性超级电容器件.通过改变凝胶电解质中所加入的无机盐电解质种类,调控器件的电化学储能性质.最终在聚乙烯醇PVA-NaCl作为凝胶电解质时,整个器件比容量最高达104.5 mF·cm~(–3),远高于有机离子凝胶与碳管阵列形成的复合器件以及无规分布的碳纳米管与水凝胶形成的复合器件,同时获得了0.034 mW·h·cm~(–3)的最大能量密度,并且具有良好的倍率性能、循环稳定性及抑制自放电的效果,并在高电压1.6 V下依然保持良好的化学稳定性.这种中性凝胶/碳管阵列复合超级电容器件不仅满足了绿色安全、柔性便携的要求,未来在医学可植入器件等领域也具有很好的应用前景.  相似文献   

16.
侯贤华  余洪文  胡社军 《物理学报》2010,59(11):8226-8230
采用磁控溅射沉积技术制备了纳米级Sn-Al合金薄膜电极材料,并用X射线衍射和扫描电子显微镜进行表征,用高精度电池测试系统进行充放电和循环伏安测试.结果表明直流DC与射频RF两种不同的溅射方法制备的Sn-Al薄膜电极具有很大的性能差异,前者DC法制备的材料颗粒细小,表现出稳定的循环性能,其首次放电容量为1060 mAh/g,首次效率为71.7%,电极经过50次循环后比容量保持在700 mAh/g以上.后者RF法制备的材料颗粒较大,放电比容量开始上升,第五次循环后接着逐渐衰减,表现出较差的循环性能. 关键词: 锂离子电池 磁控溅射 Sn-Al合金 电化学性能  相似文献   

17.
A Schiff base surfactant 2-octanone ethylenediamine (OED) was in this study designed to improve the performance of alkaline zinc-nickel batteries that were synthesized and characterized by IR and XRD. Electrochemical experimental results showed that addition of OED surfactant in both zinc electrode and electrolyte effectively inhibited self-corrosion of zinc electrode and improved performance of zinc-nickel battery charge and discharge. The battery capacity can keep almost 70 % of the theoretical capacity after 30 times cycles. The batteries also showed better performance, lower resistance, and longer cycle life with addition of surfactant, which can be attributed to fact that the zinc electrode surface had good adsorption capacity and coordination with zinc ions in the presence of surfactant.  相似文献   

18.
3D vertically aligned carbon nanotubes (CNTs)/NiCo2O4 core/shell structures are successfully synthesized as binder‐free anode materials for Li‐ion batteries (LIBs) via a facile electrochemical deposition method followed by subsequent annealing in air. The vertically aligned CNTs/NiCo2O4 core/shell structures are used as binder‐free anode materials for LIBs and exhibit high and stable reversible capacity (1147.6 mAhg?1 at 100 mAg?1), excellent rate capability (712.9 mAh g?1 at 1000 mAg?1), and good cycle stability (no capacity fading over 200 cycles). The improved performance of these LIBs is attributed to the unique 3D vertically aligned CNTs/NiCo2O4 core/shell structures, which support high electron conductivity, fast ion/electron transport in the electrode and at the electrolyte/electrode interface, and accommodate the volume change during cycling. Furthermore, the synthetic strategy presented can be easily extended to fabricate other metal oxides with a controlled core/shell structure, which may be a promising electrode material for high‐performance LIBs.  相似文献   

19.
Based on poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) and lithium tetrafluoroborate (LiBF4) salt along with blending plasticizers, ethylene carbonate (EC) and propylene carbonate (PC), high Li-ion-conducting gel polymer electrolyte films are developed. Their properties are characterized by various techniques. The ambient temperature ionic conductivity of the 85PVdF-HFP:15LiBF4 + 150(EC + PC) electrolyte film has a high value of 8.1 × 10?4 S cm?1. Its crystallinity, melting point, and electrochemical stability window are 9.5%, 115 °C, and 4.6 V, respectively. The mechanical testing shows that the Young’s modulus, yield strength, and breaking strain of this electrolyte film are 36.8 MPa, 3.4 MPa, and 320%, respectively. Lithium-ion batteries based on the gel polymer electrolyte film exhibit remarkable charge–discharge and cycling performances. The initial discharge capacity of this battery is as high as 165.1 mAh g?1 at 0.1 C and just shows a small capacity fading of 4.8% after 120 cycles, indicating that the 85PVdF-HFP:15LiBF4 + 150(EC + PC) system is an excellent electrolyte candidate for lithium-ion battery applications. The charge–discharge performance of the Li-ion cell fabricated with this gel polymer electrolyte film is apparently better than that of the previously reported Li-ion cells fabricated with other PVdF-HFP-based gel polymer electrolyte films.  相似文献   

20.
A new type of composite electrocatalyst was designed and prepared with NiFe layered double hydroxides (LDHs) for oxygen evolution reaction (OER) and CoPc for oxygen reduction reaction (ORR) supported on carbon nanotubes (CNTs). The NiFe LDH–CoPc/CNT composite exhibits higher electrocatalytic activity and stability than the commercial precious metal catalyst Pd/C + Ru/C in 6 M KOH electrolyte. The resulting rechargeable Zn–air battery showed high discharge voltage at 195 mW cm?2. The discharge voltage is around 1.08~0.95 V and the charge voltage is lower, 2.07 V, after the cycle of 300 h at 80 mA cm?2, indicating that zinc–air battery possessed high reversibility and durability over long charge and discharge cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号